
EViews® 13 Beta Documentation

EViews® 13 Beta Documentation
Copyright © 1994–2022 S&P Global Inc.
All Rights Reserved
Printed in the United States of America

This software product, including program code and manual, is copyrighted, and all rights are
reserved by S&P Global Inc. The distribution and sale of this product are intended for the use of
the original purchaser only. Except as permitted under the United States Copyright Act of 1976,
no part of this product may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of IHS Global Inc.

Disclaimer

The authors and S&P Global Inc. assume no responsibility for any errors that may appear in this
manual or the EViews program. The user assumes all responsibility for the selection of the pro-
gram to achieve intended results, and for the installation, use, and results obtained from the pro-
gram.

Trademarks

EViews® is a registered trademark of S&P Global Inc. Windows, Excel, PowerPoint, and Access
are registered trademarks of Microsoft Corporation. PostScript is a trademark of Adobe Corpora-
tion. Bloomberg is a trademark of Bloomberg Finance L.P. All other product names mentioned in
this manual may be trademarks or registered trademarks of their respective companies.

Third Party Licenses

This section contains third party notices or additional terms and conditions applicable to certain
software technologies which may be used in one or more EViews products and/or services.
Please be sure to consult the individual product files, about box, and/or install or manual docu-
mentation for specific copyright notices and author attributions. Notices on this page are current
for EViews products released on or after October 1, 2017.

diff template Library - Copyright © 2015 Tatsuhiko Kubo cubicdaiya@gmail.com. All rights
reserved.

GZipHelper - Copyright © 1995-2002 Gao Dasheng dsgao@hotmail.com.

jsonCPP Library - Copyright © 2007-2010 Baptiste Lepilleur and The JsonCPP Authors.

openssl Library - Copyright © 1998-2016 The OpenSSL Project. All rights reserved.

libcurl Library - Copyright © 1996-2013, Daniel Stenberg daniel@haxx.se.

libharu Library - Copyright © 2000-2006 Takeshi Kanno, Copyright © 2007-2009 Antony Dovgal et
all.

libssh2 Library - Copyright © 2004-2007 Sara Golemon sarag@libssh2.org, Copyright © 2005,2006
Mikhail Gusarov dottedmag@dottedmag.net, Copyright © 2006-2007 The Written Word, Inc.,

::—3

Copyright © 2007 Eli Fant elifantu@mail.ru, Copyright © 2009 Daniel Stenberg, Copyright © 2008,
2009 Simon Josefsson. All rights reserved.

ssleay License - Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

Tableau Data Extract API - Copyright © 2003-2017 Tableau and its licensors. All rights reserved.

Tramo/Seats - Copyright (c) 1996 Agustin Maravall and Victor Gomez. Windows version devel-
oped by G. Caporello and A. Maravall (Bank of Spain)

X11.2 and X12-ARIMA version 0.2.7 and X-13ARIMA-SEATS - Copyright (c) U.S. Census Bureau.

zlib Data Compression Library - Copyright © 1995-2017 Jean-loup Gailly and Mark Adler.

Notices, terms and conditions pertaining to third party software are located at http://
www.eviews.com/thirdparty and incorporated by reference herein.

S&P Global Inc.
3030 Old Ranch Parkway
2nd Floor
Suite 260
Seal Beach, CA 90740
Telephone: (949) 856-3368
Fax: (949) 856-2044
e-mail: sales@eviews.com
web: www.eviews.com
June 3, 2022

http://www.eviews.com

Table of Contents

CHAPTER 1. EVIEWS 13 BETA DOCUMENTATION OVERVIEW . 1

Beta Documentation Notes . 1

What’s New in EViews 13? . 1

CHAPTER 2. GENERAL EVIEWS INTERFACE . 5

New Pane and Tab User Interface . 5

Program Debugging . 7

Programming Dependency Logging . 9

Jupyter Notebook Support . 10

CHAPTER 3. GRAPHS AND TABLES . 13

Graph Line and Shade Transparency . 13

Custom Graph Data Labels . 17

Customizable Geomap Labels . 20

High-Low-Median Colormap Preset . 22

Fixing Rows and Columns in Tables . 25

CHAPTER 4. ECONOMETRICS AND STATISTICS . 29

ARDL Estimation . 29

Pool Mean Group (PMG) Estimation . 32

Difference-in-Difference Estimation . 33

Enhanced VEC Estimation . 34

Bayesian Time-varying Coefficient Vector Autoregression . 37

Cointegration Testing . 40

Diagnostics in ARDL . 41

Diagnostics in Panel ARDL/PMG . 49

Enhanced Impulse Response Display . 53

CHAPTER 5. DATA HANDLING . 63

Data Handling . 63

Data Sources and File Formats . 69

Matrix Language Support . 81

ii—Table of Contents

PRELIMINARY UPDATES TO FUNCTION REFERENCE . 91

PRELIMINARY UPDATES TO COMMAND REFERENCE .105

DAILY SEASONAL ADJUSTMENT .301
Background .301

Performing Daily Seasonal Adjustment in EViews .304

Example .309

References .314

LINEAR AND NONLINEAR ARDL .315
Background .315

Estimating ARDL and NARDL in EViews .320

Views and Procs of ARDL .324

Examples .335

References .359

VECTOR ERROR CORRECTION MODELS (VECMS) .361
Cointegration .361

The VECM Specification .362

Estimating VEC Models in EViews .373

Examples .379

References .398

DIFFERENCE-IN-DIFFERENCE ESTIMATION .399
Background .399

Estimating DiD in EViews .402

Examples .411

References .422

BAYESIAN TIME-VARYING COEFFICIENTS VAR MODELS .423
Background .423

Estimating BTVCVAR in EViews .425

Working with a BTCVAR .428

Implementation Details .430

Example .433

References .435

INDEX .437

Chapter 1. EViews 13 Beta Documentation Overview

The EViews development team is pleased to announce that EViews 13 is now available
for beta testing.

The Beta Version will not run unless you already have EViews 12 installed and regis-
tered on your computer. In addition, this release of the Beta Version is designed for lim-
ited time use, and will stop running after the expiration date displayed when you run
the program. We will continue to provide regular updates and bug fixes for the pro-
gram and documentation up through the final release of EViews 13.

You may send us email with comments, suggestions and bug reports at:

support@eviews.com

If you experience any problems, or have any suggestions, we would very much like to
hear from you. To report problems, please describe as completely as possible the
nature of the problem, including the sequence of operations you were carrying out,
and any messages provided. Please include your EViews 13 Beta build-date in any cor-
respondence. You can always tell the build date of your copy of EViews by selecting
Help/About EViews from the main menu.

Beta Documentation Notes

This version of the documentation is dated June 3, 2022.

This document contains preliminary documentation for some (not all) of the new fea-
tures in EViews 13.

Note, that this document is, in part, an extract from the full document so that portions
may not be formatted properly, the index is incomplete, and cross-reference links to
pages and sections may fail.

Despite all of that, you should feel free to comment on the documentation; in particu-
lar, let us know if you find portions to be unclear or in error.

What’s New in EViews 13?

EViews 13 features a wide range of exciting changes and improvements. What follows
is a list of a few of the most important new features. (Note that items may appear in
more than one category.) This is not a complete list of the new features in EViews 13.

2—Chapter 1.EViews 13 Beta Documentation Overview

General EViews Interface

• Alternative graphical user interface (“New Pane and Tab User Interface,” on page 5).

• Debugging tools for EViews programs (“Program Debugging” on page 7).

• Program dependency tracking (“Programming Dependency Logging” on page 9).

• Jupyter Notebook Support (“Jupyter Notebook Support” on page 10).

Graphs and Tables

• Line and shade transparency in graphs (“Graph Line and Shade Transparency,” on
page 13).

• Custom graph data labels (“Custom Graph Data Labels,” on page 17).

• Customizable Geomap labels (“Customizable Geomap Labels,” on page 20).

• High-low-median colormap preset (“High-Low-Median Colormap Preset,” on
page 22).

• Fixed row and column display in tables (“Fixing Rows and Columns in Tables,” on
page 25).

Estimation and Analysis

• Enhanced Autoregressive Distributed Lag (ARDL) support featuring estimation of
Nonlinear ARDL models and new diagnostics (“ARDL Estimation” on page 29).

• Improved Pool Mean Group (PMG) estimation featuring expanded deterministic
trend support, estimation with Nonlinear ARDL terms, and new diagnostics (“Pool
Mean Group (PMG) Estimation” on page 32).

• Difference-in-Difference (DID) estimation and diagnostics (“Difference-in-Difference
Estimation” on page 33).

• Enhanced Vector Error Correction (VEC) estimation, featuring improved support for
deterministic regressors (“Enhanced VEC Estimation” on page 34).

• Bayesian Time-varying Coefficient Vector Autoregression (BTVCVAR) models
(“Bayesian Time-varying Coefficient Vector Autoregression” on page 37).

Testing and Diagnostics

• Improved cointegration testing, featuring improved support for deterministic regres-
sors (“Cointegration Testing” on page 40).

• New diagnostics in ARDL equations (“Diagnostics in ARDL” on page 41).

What’s New in EViews 13?—3

• New diagnostics in panel ARDL/PMG equations (“Diagnostics in Panel ARDL/PMG”
on page 49).

• Extended VAR/VEC impulse response confidence interval calculation and display
(“Enhanced Impulse Response Display” on page 53).

Data Handling

Data Handling

• Daily data seasonal adjustment (“Daily Data Seasonal Adjustment” on page 63).

• New and improved Excel file writing engine (“New Excel File Writing Engine” on
page 65).

• Enhanced holiday family of functions to return the proportion of an annual event
associated with each observation (“Holiday Functions” on page 65).

Data Sources and File Formats

• Australian Bureau of Statistics SDMX (“SDMX Databases,” on page 69).

• Deutsche Bundesbank SDMX (“SDMX Databases,” on page 69).

• Insee SDMX (“SDMX Databases,” on page 69).

• Trading Economics (“Trading Economics,” on page 72).

• World Health Organization (“World Health Organization,” on page 77).

Matrix Language

• Improved data import and export from matrix objects (“New Data import/export
engine,” on page 81).

• Expanded support for row and column labeling (“Row and Column Label Support,”
on page 83).

• Improved data access to matrix object data (“Matrix Data Access,” on page 86)

Preliminary Updates to Function Reference

• Preliminary list of new and updated functions (“Preliminary Updates to Function Ref-
erence” on page 91).

4—Chapter 1.EViews 13 Beta Documentation Overview

Chapter 2. General EViews Interface

EViews 13 features exciting new interface improvements to improve the general EViews interac-
tive and programming environment, and to support complementary external interfaces:

• Alternative graphical user interface (“New Pane and Tab User Interface,” on page 5).

• Debugging tools for EViews programs (“Program Debugging” on page 7).

• Program dependency tracking (“Programming Dependency Logging” on page 9).

• Jupyter Notebook Support (“Jupyter Notebook Support” on page 10).

New Pane and Tab User Interface

The familiar EViews multiple window interface offers users many advantages, especially on large
computer screen displays. In some small screen settings, however, it can be more difficult to uti-
lize fully the advantages of having multiple windows open at the same time.

EViews 13 offers a new, alternative user interface mode that employs panes and tabs in places of
multiple windows. The built-in organization properties of this interface may be ideally suited to
smaller display environments.

To enable or disable the pane and tab mode, click on General Options/Environment/Appear-
ance and select the Use panes & tabs checkbox to enable the new mode:

6—Chapter 2.General EViews Interface

In the pane and tab UI mode, different types of windows will appear in docked panes inside
the EViews window:

• Workfile and database windows are displayed in a pane on the left-hand side of the
window

• Program windows are displayed in a pane on the right-hand side of the window

• Object windows are displayed in a pane in the center of the window

When you open multiple workfiles or multiple programs, previously opened windows will
appear as tabs in the corresponding docks. You may bring focus to a specific window by
clicking on the corresponding tab.

When you open multiple object windows, the previously opened windows will appear as
tabs in the object pane. You may bring focus to an object by clicking on the down arrow at
the upper right of the object dock and selecting the desired object, or by selecting Window
from the main EViews menu and clicking on the object name in the list of opened objects.

Program Debugging—7

To maximize screen real estate further, you may place the workfile/database and the pro-
gram panes in drawers. Placing a pane in a drawer temporarily hides the pane while retain-
ing quick, on-demand access to the pane.

• Click on the pin icon at the top of a docked pane to hide it in a drawer on the side of
the window. The pane window will close and be replaced by a drawer label on the
side of the window. Hovering the cursor over the drawer label will open the drawer
and display the pane window. Clicking away from the pane will close the drawer.
Click again on the pin to remove the pane from the drawer and open the docked
pane window.

Program Debugging

EViews 13 now offers tools for debugging an EViews program to help you to identify issues
or locate the source of problems. The debugging tools allow you to set breakpoints on spe-
cific lines, run the program until it hits that breakpoint, and then examine at the state of
your workfile or variables at that point in the program execution.

Setting Breakpoints

Open the EViews program file, then set the breakpoint on a given line by clicking in the left
(next to the line number):

A red dot will appear next to lines with breakpoints set. Clicking on the red dot will clear the
breakpoint.

8—Chapter 2.General EViews Interface

Starting a Debugging Session

To begin debugging the program, click the Debug button in the toolbar, enter any program
arguments, specify whether to Log dependencies and if desired, change the Maximum
errors before halting. Click on OK.

EViews will start program execution and will open the debugging pane. There are three
areas in the pane: Breakpoints, Watch, and Callstack. Clicking on the name in one of the
tabs will display the corresponding area.

The breakpoints window shows all defined breakpoints. You may make a breakpoint tempo-
rarily inactive or restore active status by toggling the checkbox next to the breakpoint name.

Stopped at a Breakpoint

When the program reaches an active breakpoint, the execution will pause and the red dot
will be highlighted, in yellow:

At this point you can look at the Callstack or Watch windows for relevant information.

• The Callstack will display information about the active program files and subrou-
tines of the EViews program.

• The Watch window may be used to examine the values of program and replacement
variables. Simply enter the desired

Additionally, you may open EViews objects such as series or equations to examine their cur-
rent states.

Programming Dependency Logging—9

Resume / Step / Run / Stop

To resume the execution, click the Resume button. The EViews program execution will con-
tinue until it hits the next breakpoint.

You can also execute just the current line by clicking the Step button.

To run the program to completion without stopping at breakpoints, click the Run button.

You can also cancel the program execution at this point by clicking the Stop button.

Restrictions during Debugging

During a debugging session, EViews will not allow you to close any windows that were
opened by the program as this could negatively affect the program execution.

Programming Dependency Logging

EViews 13 has a new feature to automatically log a program’s external dependencies (e.g.
workfiles, databases, and other programs).

This feature is available when you run a program under EViews 13 by checking the Log
Dependencies checkbox in the Run Program dialog:

During the run of this program, a new Program Dependencies window will appear, show-
ing all of the external dependencies that have been detected during the run, with informa-
tion on the source of the dependency and the calling information. For example:

10—Chapter 2.General EViews Interface

shows dependence on the external program files “xy.prg”, “wz.prg” and “z22.prg” along
with the workfiles “tq.wf1” and “untitled.wf1”, and the database “dbtest.edb”. Further, the
dependency log shows the program file and line number producing the dependency.

Jupyter Notebook Support

Jupyter is a web-based interactive development environment (https://jupyter.org/) that
allows users to create notebooks for documenting computational workflow. EViews 13 can
now be used as a Jupyter kernel. This means you can use Jupyter Notebook to run and orga-
nize an EViews program and display results from within the Jupyter Notebook.

Publishing the EViews Jupyter Kernel

Once you have Jupyter Notebook installed, you can make the EViews kernel available to
Jupyter by going to the main EViews menu and selecting Options/General Options/Exter-
nal program interface, then click the Publish Jupyter Notebook button.

https://jupyter.org/

Jupyter Notebook Support—11

This will create a new EViews specific folder under the standard Jupyter Kernels folder loca-
tion, usually found at “%AppData%/Roaming/jupyter/kernels”.

Launching EViews Jupyter Kernel

Once the EViews kernel has been published, you can select it from the Jupyter home page.

Running EViews Commands

Once the Jupyter Notebook is started, you can type in EViews commands into the textboxes,
then SHIFT-ENTER to run them.

12—Chapter 2.General EViews Interface

Chapter 3. Graphs and Tables

EViews 13 introduces a number of productivity enhancing improvements to the graph and table
presentation toolkit. The following is a brief outline of the most important new features, followed
by discussion and links to preliminary documentation.

• Line and shade transparency in graphs (“Graph Line and Shade Transparency,” on
page 13).

• Custom graph data labels (“Custom Graph Data Labels,” on page 17).

• Customizable geomap labels (“Customizable Geomap Labels,” on page 20)

• High-low-median colormap preset (“High-Low-Median Colormap Preset,” on page 22).

• Fixed row and column display in tables (“Fixing Rows and Columns in Tables,” on
page 25).

Graph Line and Shade Transparency

EViews 13 now allows you to customize the opacity (transparency) levels of individual lines and
shades in a graph. By exercising fine control over the visibility of stacked graph elements, you
can uncover previously hidden features of your data.

When plotting multiple data for series in prior versions of EViews, the graph for data from one
series could obscure the data of another. For example, the following area graph shows time series
graphs for three series in a group object (ALLIED, DUPONT, and EXXON):

14—Chapter 3.Graphs and Tables

In this graph, data for ALLIED is drawn first, followed by the data for DUPONT, and then by
the data for EXXON. Notice that the areas for the later drawn series obscuring the areas for
the earlier. Note in particular, that the values of EXXON for observations hide the corre-
sponding values of DUPONT and ALLIED, particularly for observations from 9 to 16.

EViews 13 allows you to adjust the opacity of individual graph elements to improve the visi-
bility of others. To set the opacity for one or more elements, double click on the graph to dis-
play the graph options, or select on the Options button on the button bar, then select the
Graph Elements node.

Opacity levels may be set for individual Lines and Fill Areas by clicking on an entry in the
right hand side of the graph to select a graph element and then entering a number from 0 to
100 in the Opacity % edit field:

You may set levels for more than one element simultaneously by SHIFT or CTRL clicking to
select multiple elements, and then applying the desired setting.

Here is the same graph after setting the Opacity % of all three of the fill elements to “50”:

Graph Line and Shade Transparency—15

Note the additional visible detail in the values of the ALLIED and DUPONT series for obser-
vations 9 to 16. In particular, the values of ALLIED, the first drawn series were virtually
invisible in the earlier graph, but now show an obvious sawtooth pattern.

Similarly, turning down the opacity in a dense scatterplot can show additional detail:

Judicious use of transparency settings makes possible the production of graphs that show
data in ways that were not previously possible. The new multiple shaded confidence inter-
vals in combined impulse-response graphs (“Enhanced Impulse Response Display” on
page 53) employ these settings and hint at the types of graphs that may be produced:

16—Chapter 3.Graphs and Tables

To set opacity levels by command use the setelem (p. 240) command to select an element
and add the lineopacity (for lines) and fillopacity (for fills) keyword to set the opac-
ity value.

Setting the level to 0.0 (0%) will make the object completely transparent while 1.0 (100%)
will make the object completely opaque.

For example,

gr1.setelem(2) lineopacity(.5)

In our example, the second line in the graph was set to be 0.5 (50%) opaque.

Custom Graph Data Labels—17

Custom Graph Data Labels

Providing labels for data values can be an important tool for enhancing the information con-
tent of graphical presentation of data. EViews 13 offers new automatic tools which make it
easy to augment your graphs with informative custom data and observation-based labels.

Recall that in EViews 12 and earlier, EViews offered option to use data values to label each
of the observations in a graph.

While often quite useful, this option had limitation. For one, labeling observations with data
values was an all or nothing proposition; data values were either displayed for all observa-
tions or for none of the observations. Further, customization of the format of the data labels
was limited to specifying a size and font of the data label, and showing or not showing an
open or closed circle symbol alongside the label.

EViews 13 enhances the ability to label observations to provide you with greater control
over your data labeling. You may now:

• Label all observations, no observations, the first observation, or the last observation.

• Specify the content of the data label by using the data value, the observation, the
name of the series, or arbitrary text.

• Modify the font, font size and position of the data label.

Data labeling is controlled in the Graph Options dialog. Click on the Options button or dou-
ble-click on the graph to display the dialog then select Graph Elements and Lines & Sym-
bols and select one or more the elements on the right-hand side of the dialog The Symbol/

18—Chapter 3.Graphs and Tables

Data label settings will be displayed when you choose Symbols or Lines & Symbols to dis-
play. To show data labels, select one of the Data label entries in the drop-down control:

Here, we have selected the Data label with a closed circle symbol. By default, when you
choose this setting, EViews will display labels for all observations.

EViews 13 introduces the ability to customize the data label. Click on the large Options but-
ton under the Data Label entry in the middle of the dialog to display the Label Options dia-
log:

The first tab provides basic labeling options:

Custom Graph Data Labels—19

• The radio buttons in the bottom left allow you to choose between displaying labels
for All, the First, or the Last observation.

• The Position drop down lets you choose to display the label using Auto positioning,
or to the Right of observation, Left of observation, Above observation, Below
observation, or Center on observation.

• The Label Format edit field allows you to specify the content of the label. You
should enter text for the specification in the edit field. The special functions
@xlabel() and @ylabel() instruct EViews to use the corresponding X-values and
Y-values of the observations as the label; the function @legend() corresponds to the
legend value for the data element. All other text will be used in the label as given.
You may use the ENTER key format the label in multiple lines.

The second tab of the dialog specifies font family, size, and color settings, as well as special
text effects like underlining and strikethrough.

Below, we use the Last observation setting to label the last data point using the Y-value to
form a custom data string “% growth (actual)”, by entering

@ylabel()% growth

(actual)

in the edit field. Note that the carriage return in the edit field is used to create a multi-line
label.

Importantly, if an observation were to be added to end of the graph, the data label would
automatic change to reflect the new value as well as move to proper location above new
observation.

Similarly, you may use custom data labels in place of a legend. In this example, the legend
was disabled and we activate the custom data label for the last observation, using a

20—Chapter 3.Graphs and Tables

@legend()

specification in the edit field.

Note that a custom data label differs from a custom text label. Data labels are attached to an
observation in the graph, while custom text labels may be placed anywhere in the graph.
While custom text labels may be placed so that they appear related to specific data values, it
takes a bit of work to tie them to the observation data values. In contrast, a custom data
label is designed to be linked to the observations so it may easy to attach label text to the
first, last, or all of the observations.

Customizable Geomap Labels

In EViews 13, you may now use more than one attribute, along with custom text and for-
matting, to label the shapes in your geomap.

Note that the ability to attach labels to the shapes in a geomap is one of the most important
tools for customizing the display of area data. In the simplest example, we may display the
name of a geographic region in each area of a geomap display. For example, we may display
the county names in our geomap display of the county areas in the State of California, USA.

Customizable Geomap Labels—21

Here, the county names are one of several attributes of the geomap shapefile data, which
pairs each shape are with one or more pieces information. Each shape in the file might have
information on “Name”, “Population”, “Income”, “Population % change”, etc.

In EViews 12, you could display a geomap with a single label taken from a single attribute,
as in the example above. So while you could instruct EViews to use the “Name” attribute to
display county name, or the “Population” attribute to show population, you could not dis-
play labels showing both county name and population in each shape.

EViews 13 removes this single attribute restriction, allowing you to use multiple attributes to
construct an area label. Furthermore, you may add custom text to your label, and apply cus-
tom formatting including, font family and size, and multi-line display.

Should the default position of a label not be ideal, it may be adjusted manually. Simply click
and drag a label to its desired location:

22—Chapter 3.Graphs and Tables

Note the improved labeling of the offshore areas in Santa Barbara, Ventura, and Los Angeles
counties.

For command support, see

• setjust (p. 259) to set the display justification for multi-line area labels.

• setshapelabel (p. 263) to set which attribute to use or create a custom label to use
when labeling shapes.

High-Low-Median Colormap Preset

EViews supports colormaps where you can define sets of rules that translate numeric values
into colors. These colormaps may then be used when setting the text or fill color for series or
group spreadsheets, or the fill colors in geomaps.

EViews 12 offers a number of predefined colormaps for common settings, such as the Posi-
tive-negative colormap which negative values will be displayed as red and positive values
will be displayed as black. In addition to EViews 12 pre-specified presets, EViews 13
includes a new preset which allows users to identify the high, low, and median observa-
tions.

To apply this preset to a displayed series spreadsheet, click on Properties then select the
Text Color or Fill Color tab as desired:

High-Low-Median Colormap Preset—23

Choose High-Low-Median in the Type dropdown, and choose the colors appropriately.
Click on OK to display the spreadsheet with the colormap applied:

For geomaps you will click on Properties, then select the Color tab and choose High-Low-
Median in the Type dropdown,

24—Chapter 3.Graphs and Tables

Click on OK to display the geomap with the colormap applied:

• See the existing EViews documentation for discussion of setfillcolor.

Fixing Rows and Columns in Tables—25

Applying a high-low-median colormap is done using the existing setfillcolor proc and
the “t=hilo” option:

geomap01.setfillcolor(t=hilo) mapser(POP_TOTAL) min(-352258.35)
max(7408557.35) highclr(@RGB(255,168,168))
lowclr(@RGB(255,255,128)) medianclr(@RGB(255,190,96))

Fixing Rows and Columns in Tables

EViews 13 now allows you to fix rows and columns in the display of a table so that these
rows and columns are always in view as you scroll the remaining cells of the table.

There are times when it is useful to lock one or more rows or columns in a table so that
those rows and columns are always in view. Depending on the contents of the table, the first
few rows or columns in your table may contain identifying information about the data cells
within the table. When searching for a specific cell or set of cells, fixing the display of these
identifiers makes this task much easier. This is especially useful for tables containing a large
number of columns or rows.

This situation often occurs, for example, when working with tables where the first row con-
tains column names and the first column contains observation IDs. In the case when the
table is scrolled both vertically and horizontally such that the 20th column and the 100th row
of a table is in view it may be helpful to see the column names and observation IDs to have
provide context to the contents of the cell.

Fixing columns and rows in a table can be done by pressing the Proc button in a table object
button bar. Then,

• To fix only the first row, select Fix Row-Column/Fix 1 Row. If more than 1 row is to
be fixed, select a cell in the first row after the last desired fixed row and then from
the Proc menu select Fix Row-Column/Fix # Rows. For example, to fix the first 3
rows of table, select a cell in the fourth row and then select Fix Row-Column/Fix 3
Rows.

• The process for fixing columns is the same as fixing rows with the obvious exception
of selecting

• Fix Row-Column/Fix #Columns - Similarly, after navigating through the proc menu,
the columns proceeding the current selected cell will be fixed. Note the fixed col-
umns and rows will be denoted in the table by a black cell border.

In the image below, you can see the date column (column A) and the series names (row 1)
are in view despite the table being scrolled horizontally 3 columns where column F is the
first data column and vertically scrolled 447 rows where row 448 is the first row.

26—Chapter 3.Graphs and Tables

The fixed columns are denoted by a black cell border that extends from the top to bottom of
the table and the fixed rows are separated by a similar black border that extends from the
left to right of the table.

With fixed headers and rows, we can easily identify the selected cell as being the value for
Spain on March 21st, 2014.

In this second example, the fixed first two columns and the fixed first row make it easy to
identify the LCARPCAP values for Turkey from 1960 to 1978 despite the fact that the dis-
played values are for the 288th row and 12th column (M column) of the table.

Fixing Rows and Columns in Tables—27

To unfix any fixed rows or columns, simply press the Proc button and either select Fix Row-
Column/Remove Fixed Columns or Remove Fixed Rows. Note: the cell selection is ignored
when unfixing rows or columns.

Note that fixed rows and columns are saved with the table when the workfile is saved to
disk.

For command support, see:

• fixcol (p. 179)

• fixrow (p. 179)

• fixrowcol (p. 180)

Fixing the beginning set of columns in table is accomplished via the table name followed by
the fixcol proc and the number of columns to be fixed. This procedure force the number
of specified columns to always be in view regardless of the horizontal scroll position. Once
fixed, a black cell border will separate the fixed and unfixed rows and columns.

Similarly, to fix the beginning set of rows in the table use the fixrow keyword followed by
the number of rows to be fixed.

28—Chapter 3.Graphs and Tables

For example, the commands

tab1.fixcol 2

tab1.fixrow 1

will fix the first two columns and the first row of the table.

Alternately you may fix both the row and column using the single command

tab1.fixrowcol 1 2

You may clear the fixed rows and columns using

tab1.fixcol 0

tab1.fixrow 0

or

tab1.fixrowcol 0 0

Chapter 4. Econometrics and Statistics

EViews 13 offers a variety of additions and improvements to our set of econometric and statisti-
cal features. The following is a brief outline of the most important new features, followed by dis-
cussion and links to preliminary documentation.

Estimation and Analysis

• Enhanced Autoregressive Distributed Lag (ARDL) support featuring estimation of Non-
linear ARDL models and new diagnostics (“ARDL Estimation” on page 29).

• Improved Pool Mean Group (PMG) estimation featuring expanded deterministic trend
support, estimation with Nonlinear ARDL terms, and new diagnostics (“Pool Mean
Group (PMG) Estimation” on page 32).

• Difference-in-Difference (DID) estimation and diagnostics (“Difference-in-Difference Esti-
mation” on page 33).

• Enhanced Vector Error Correction (VEC) estimation, featuring improved support for
deterministic regressors (“Enhanced VEC Estimation” on page 34).

• Bayesian Time-varying Coefficient Vector Autoregression (BTVCVAR) models (“Bayesian
Time-varying Coefficient Vector Autoregression” on page 37).

Testing and Diagnostics

• Expanded cointegration testing, featuring improved support for deterministic regressors
(“Cointegration Testing” on page 40).

• New diagnostics in ARDL equations (“Diagnostics in ARDL” on page 41).

• New diagnostics in panel ARDL/PMG equations (“Diagnostics in Panel ARDL/PMG” on
page 49).

• Extended VAR/VEC impulse response confidence interval calculation and display
(“Enhanced Impulse Response Display” on page 53).

• Improved forecast sample flexibility (“Enhanced Impulse Response Display” on page 53).

ARDL Estimation

EViews 13 offers improvements to existing tools for analyzing data using Autoregressive Distrib-
uted Lag Models (ARDL), featuring estimation of Nonlinear ARDL (NARDL) models which allow
for more complex dynamics, with explanatory variables having differing effects for positive and
negative deviations from base values.

30—Chapter 4.Econometrics and Statistics

The classical ARDL framework assumes that the long-run cointegrating relationship is a
symmetric linear combination of regressors. While this is a natural starting assumption, it
does not match the behavioral finance and economics literature approach to modeling non-
linearity and asymmetry (Kahneman, Tversky, and Shiller, 1979). In response, Shin (2014)
proposes a nonlinear ARDL (NARDL) framework in which short-run and long-run nonlin-
earities are modeled as positive and negative partial sum decompositions of the explanatory
variables.

From the main EViews menu, click on Quick/Estimate Equation… or type the command
equation in the command line to open the equation dialog. Then select the ARDL -
Autoregressive Distributed Lag Models (including NARDL) from the Method dropdown
to display the ARDL dialog:

In the Linear dynamic specification, you should a enter a list of variables consisting of the
dependent variable followed by any symmetric ARDL distributed lag regressors. At a mini-
mum, the edit field must contain the dependent variable.

Exogenous regressors, including deterministics, may be specified in the Fixed regressors
specifications section. Trend regressors corresponding to the five deterministic cases dis-

ARDL Estimation—31

cussed (None, Restr. constant, Constant, Restr. trend, Trend) may be specified using the
Trend specification dropdown. All other exogenous regressors (those apart from the con-
stant and the trend) should be specified in the Fixed regressors edit field.

Asymmetric distributed lag regressors may be listed under Asymmetric dynamic specifica-
tions. In particular, the Long-run and short-run edit field may be used to specify regressors
which are asymmetric in both the long-run and short-run. Regressors which are asymmetric
only in the long-run may be specified in the Long-run only edit field, while those which are
asymmetric exclusively in the short-run are specified in the Short-run only edit field.

• For a preliminary version of the new ARDL chapter in User’s Guide II, see “Linear
and Nonlinear ARDL” on page 315.

• See ardl (p. 112) for updated command documentation.

• See also “Diagnostics in ARDL” on page 41 for a summary of new EViews 13 views
and procedures in both Linear and Nonlinear ARDL estimated equations.

Dependent Variable: DLOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 15:37
Sample (adjusted): 1950Q3 2000Q4
Included observations: 202 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Fixed-lag dual non-linear regressors: LOG(REALGOVT)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) -0.126939 0.037213 -3.411168 0.0008
LOG(REALGDP(-1)) 0.133061 0.040618 3.275890 0.0012

@CUMDP(LOG(REALGOVT(-1))) -0.004936 0.008563 -0.576444 0.5650
@CUMDN(LOG(REALGOVT(-1))) -0.018402 0.020006 -0.919856 0.3588

C -0.100803 0.063927 -1.576846 0.1165
DLOG(REALGDP) 0.643050 0.050018 12.85647 0.0000

@DCUMDP(LOG(REALGOVT)) -0.149865 0.042682 -3.511242 0.0006
@DCUMDN(LOG(REALGOVT)) -0.114135 0.103098 -1.107051 0.2696

R-squared 0.473136 Mean dependent var 0.008782
Adjusted R-squared 0.454125 S.D. dependent var 0.008864
S.E. of regression 0.006549 Akaike info criterion -7.180217
Sum squared resid 0.008320 Schwarz criterion -7.049196
Log likelihood 733.2019 Hannan-Quinn criter. -7.127206
F-statistic 24.88805 Durbin-Watson stat 2.584413
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model selection.

32—Chapter 4.Econometrics and Statistics

Pool Mean Group (PMG) Estimation

In large sample panel datasets, a popular approach for analyzing dynamic data is the Pooled
Mean Group (PMG) estimator of Pesaran, Shin and Smith (1999) (PSS). This model takes
the cointegration form of the simple ARDL model and adapts it for a panel setting by allow-
ing the intercepts, short-run coefficients, and cointegrating terms, to differ across cross-sec-
tions.

EViews 13 extends the estimation of PMG models to support:

• a greater range of deterministic trend specifications (including those with fully
restricted constant and trend terms)

• specifications with asymmetric regressors.

To estimate a Panel ARDL/PMG model in EViews, open the equation dialog by selecting
Quick/Estimate Equation…, or by selecting Object/New Object…/Equation and selecting
PMG/ARDL from the Method dropdown menu. EViews 13 will then display the new ARDL
estimation dialog:

While much of the dialog is familiar from earlier versions of EViews, notably different in the
EViews 13 PMG dialog are additional entries in the Trend specification corresponding to
restricted intercept and trend specifications, and new edit fields for specifying Asymmetric
dynamic specifications. The Trend specification upgrades allow for a wider range of long

Difference-in-Difference Estimation—33

and short-term dynamics, while the latter fields support asymmetric variables in the PMG
estimator.

• See the discussion of non-panel ARDL estimation in “Background” on page 315 and
“Estimating ARDL and NARDL in EViews” on page 320 for additional detail.

• See ardl (p. 112) for updated command documentation.

• See also “Diagnostics in Panel ARDL/PMG” on page 49 for discussion of new EViews
13 views and procedures in panel PMG estimated equations.

Difference-in-Difference Estimation

Difference-in-difference (DiD) estimation is a popular method of causal inference that allows
estimation of the average impact of a treatment on individuals.

EViews 13 offers tools for estimation of the DiD model using the common two-way fixed-
effects (TWFE) method, as well as post-estimation diagnostics of the TWFE model, such as
those by Goodman-Bacon (2021), Callaway and Sant’Anna (2021), and Borusyak, Jaravel,
and Spiess (2021).

To estimate a DiD model in EViews, bring up the equation dialog by clicking on Object/New
Object…/Equation or Quick/Estimate Equation… from the main menu bar in your panel
workfile. EViews will detect the presence of your panel structure and in place of the stan-
dard equation dialog will open the panel equation estimation dialog. Select DiD – Differ-
ence-in-Difference in the Method dropdown display the DiD dialog:

In the Equation specification edit field you should enter the dependent variable followed by
any exogenous regressors apart from the treatment variable.

34—Chapter 4.Econometrics and Statistics

The treatment variable should be entered in the Treatment Variable edit field. The treat-
ment series should be a binary variable indicating whether the individual has been treated
(i.e., is 1 if the observation in a treatment group which is post-treatment date for that group,
and 0 otherwise).

The Options tab contains a single Coefficient name edit field that allows you to change the
default coefficient vector.

Click on OK to perform the difference-in-difference estimation and display the output:

• See “Difference-in-Difference Estimation” on page 399 for additional discussion.

• See did (p. 143), didcs (p. 144), didgbdecomp (p. 144), didmakeeq (p. 145),
didtrends (p. 146) for command documentation.

Enhanced VEC Estimation

Estimation of Vector Error Correction (VEC) models using reduced rank regression (RRR)
has been a staple of EViews for several versions. Previous versions of EViews supported a
variety of built-in specifications for deterministic trends, and allowed users to add unre-
stricted exogenous regressors to account for short-term dynamics.

One important limitation of the existing tools for VEC estimation was the inability of users to
add arbitrary exogenous variables to the cointegrating relation since the set of admissible
restricted regressors was limited to the endogenous variables and potentially an intercept,
and possibly a linear trend term.

Dependent Variable: L_HOMICIDE
Method: Difference-in-Difference
Date: 05/13/22 Time: 10:56
Periods included: 11
Cross-sections included: 50
Total panel (balanced) observations: 550

Variable Coefficient Std. Error t-Statistic Prob.

POST 0.081812 0.064117 1.275980 0.2026

R-squared 0.910576 Mean dependent var 1.405760
Adjusted R-squared 0.899604 S.D. dependent var 0.590154
S.E. of regression 0.186992 Akaike info criterion -0.411237
Sum squared resid 17.09842 Schwarz criterion 0.066772
Log likelihood 174.0902 Hannan-Quinn criter. -0.224439
F-statistic 82.98904 Durbin-Watson stat 1.469473
Prob(F-statistic) 0.000000 Parallel trend stat 0.820393
Prob(P. trend) 0.411992

Enhanced VEC Estimation—35

EViews 13 removes this limitation on restricted regressors and improves on the prior treat-
ment of exogenous variables in two distinct ways:

• by providing new deterministic trend assumption presets which allow for more flex-
ible specification of restricted and unrestricted deterministic coefficients, and

• by allowing users to add exogenous variables that are restricted to the cointegrating
relation, variables that are unrestricted, and variables that in both the short and
long-run equations, with an orthogonality assumption used to obtain the different
coefficients.

To estimate a VEC using the new features, from the main application menu of an existing var
object, click on the Estimate button to open the VAR Specification estimation dialog. Alter-
nately, you may create a new VAR object by selecting Object/New Object... group, then
selecting VAR. Once the dialog appears, select Vector Error Correction in the Method drop-
down menu to display the VEC estimation dialog:

The Exogenous variables section of the main estimation dialog has fields for variables that
are Short-run (outside cointegrating equation) only, variables that are Long-run (inside
the cointegrating equation) only, and variables that are Both long-run and short-run.

Further, the Deterministic trend specifications dropdown on the Cointegration tab offers
additional predefined deterministic trend specifications.

36—Chapter 4.Econometrics and Statistics

Selecting a specification in which both intercept and trend are short-run only and clicking
on OK produces estimates using the new deterministics:

• See “Vector Error Correction Models (VECMs)” on page 361 for additional discussion.

Bayesian Time-varying Coefficient Vector Autoregression—37

• See also “Cointegration Testing” on page 40 for related improvements in cointegra-
tion testing.

• See ec (p. 151) for updated command documentation.

Bayesian Time-varying Coefficient Vector Autoregression

The time-varying coefficients vector autoregression, or TVCVAR, is a nonlinear VAR model
with coefficients that evolve smoothly over time. EViews 13 supports Bayesian TVCVAR, or
BTVCVAR. The BTVCVAR is popular even among those who do not identify as Bayesian
because the prior provides a convenient way to induce shrinkage in a model that needs it.

To estimate BTVCVAR in EViews, click on Quick/Estimate VAR... or run var in the com-
mand window. This will open the VAR Specification dialog. Select Bayesian TVCVAR from
the VAR type dropdown menu. The dialog should now have the Basics, Prior, and Options
tabs.

Endogenous variables, lags, exogenous variables, and the estimation sample are set in the
Basics tab. Lags are required to be contiguous.

EViews gives users the option of setting aside a subset of the estimation sample for the pur-
pose of specifying a prior distribution. The observations that go towards specifying the prior
comprise the prior sample. The remaining observations make up the data sample, which is
used to update the prior.

38—Chapter 4.Econometrics and Statistics

Prior hyper-parameters are set inside the Prior tab. To help with setting the prior, EViews
maps the BTVCVAR prior hyper-parameters to a set of six scalar quantities. Users set these
scalars to specify a prior sample, control the variability of the time-varying coefficients, etc.

There are four categories in the Options tab: Sampler, Display, Smoother, and Stability.

The Sampler options determine how the posterior sample is generated.

Bayesian Time-varying Coefficient Vector Autoregression—39

• The burn-in size is the number of initial draws to discard. It is specified as a count.
The burn-in process gives the underlying Markov chain time to converge to the poste-
rior distribution.

• The posterior sample size is used to determine how many posterior draws are used
to carry out post-updating procedures (estimation, forecasting, impulses responses
analysis, etc.).

• The thinning size is used to thin the Markov chain. A thinning size of indicates
that every -th draw is stored. For example, no thinning occurs when is set to 1,
and every other draw is stored when is set to 2. By definition, thinning does not
apply to burn-in draws.

• The seed field is used to set the random seed for the posterior simulator. EViews will
generate a seed automatically if the user does not specify one. Click Clear to clear the
seed field.

• The number of subchains field determines how many subchains are used when the
posterior sample gets regenerated. Regeneration is typically much faster than initial
generation since subchains can be run in parallel.

Display options determine what to report as estimation results. Users can pick either poste-
rior median or posterior mean as their point estimate. The point estimate type selected here
will be applied to the coefficients, the observation covariance matrix, and the errors. Users
can also display equal-tailed credibility intervals (bands) at one or more credibility levels for
the coefficients. To do so, check the box next to Show credibility intervals. Bands use shad-
ing by default. To use lines instead, check the box next to Use lines.

A simulation smoother can be selected from the dropdown menu under Smoother. EViews
currently supports three simulation smoothers: the Cholesky factor algorithm (CFA), the
Kalman filter and smoother (KFS), and the method of McCausland, Miller, & Pelletier
(MMP). For more information, see McCausland, Miller, & Pelletier (2011) and the references
therein.

To enforce stable VAR coefficients at each date within the data sample, select Cogley & Sar-
gent from the dropdown menu under Stability. The maximum number of attempts thresh-
old ensures that the sampler does not get stuck in an infinite loop in an attempt to obtain
stable draws.

Once the BTVCVAR model has been specified, click on OK to run the posterior simulator.
Progress is displayed in the bottom left corner of the EViews window. Once posterior simu-
lation is complete, estimates and other statistics based on the posterior sample are com-
puted.

Estimation results are presented in a spool-like object. The nodes under Output Sections in
the left pane are used for navigation. For example, clicking on the Summary node will bring

r
r r

r

40—Chapter 4.Econometrics and Statistics

the summary table into focus. The checkboxes that appear below Display Coefficients are
used to show/hide coefficient series that are associated to specific endogenous variables,
lags, and exogenous variables. For example, unchecking the box next to C hides the coeffi-
cient series associated to the constant term in all graphs.

• See “Bayesian Time-varying Coefficients VAR Models” on page 423 for a preliminary
version of the full documentation.

• See btvcvar (p. 119) for new command documentation.

Cointegration Testing

The introduction of new deterministic trend settings and exogenous variable support in
EViews 13 VEC estimation (“Enhanced VEC Estimation” on page 34) offers corresponding
improvements in cointegration testing in both group and var object settings.

To perform a Johansen cointegration test to determine the rank that should be used in esti-
mation of the VEC select View/Cointegration Test/Johansen System Cointegration Test...,
from a group window, or Views/Cointegration Test... from an estimated VAR object win-
dow using. In the latter case, the test dialog will be pre-filled with the cointegration specifi-
cation, if applicable:

All new settings allow you to specify new deterministic trend specifications will restricted
constants and trends, and now allow you to specify exogenous variables that appear in the
long-run cointegrating relation.

Diagnostics in ARDL—41

• See “Vector Error Correction Models (VECMs)” on page 361 for additional discussion.

• See also “Enhanced VEC Estimation” on page 34 for related improvements in VEC
estimation.

• See coint (p. 124) for updated group object and coint (p. 133) for updated var
object command documentation.

Diagnostics in ARDL

In addition to the support for nonlinear ARDL specifications, EViews 13 offers a number of
new ARDL diagnostics. These diagnostics are designed to help you examine the dynamic
behavior of your variables, the long-run properties of your specification, and the appropri-
ateness of your model:

• Improved display tools make it easier to use the ARDL estimates to examine the
short and long-run representations of the distributed lag regressors and cointegrating
relationships. (“Enhanced Presentation of ARDL Results” on page 42.)

42—Chapter 4.Econometrics and Statistics

• EViews now produces cumulative dynamic multipliers (CDM) graphs showing cumu-
lative marginal contribution of an explanatory variable to the dependent variable
(“Cumulative Dynamic Multiplier Graphs” on page 45).

• Bounds tests are for cointegration are now available as a view of your ARDL equa-
tion (“Bounds Tests” on page 47).

• You may evaluate symmetry restrictions on the coefficients of the asymmetric long
and short-run regressors (“Testing for Asymmetry” on page 48).

For a preliminary version of the new ARDL chapter in User’s Guide II, see “Linear and Non-
linear ARDL” on page 315.

Enhanced Presentation of ARDL Results

EViews 13 offers enhanced presentation of ARDL results, with an clearer emphasis on high-
lighting the error correction results and the cointegrating relationship.

The new error correction spool output (View/ARDL Diagnostics/Error-Correction Results)
shows two representations of the coefficients in the cointegrating relationship, allowing you
to easily move between viewing the long-run relationship results in the Conditional Error
Correction (CEC) and the Error Correction (EC) forms.

The CEC focuses on the natural division between long-run and short-run dynamics, with the
former generated by regressors entering in levels/lags, and the latter by regressors in differ-
ences

Diagnostics in ARDL—43

while the EC representation uses the cointegrating relation to highlight the speed of adjust-
ment to long-run equilibrium,

44—Chapter 4.Econometrics and Statistics

The new cointegrating relation spool view (View/ARDL Diagnostics/Cointegrating Rela-
tion) lets you switch between viewing the specification, coefficient results, and a graphical
display of the cointegrating relation.

Diagnostics in ARDL—45

• See cointrel (p. 137) and ecresults (p. 154) for command documentation.

Cumulative Dynamic Multiplier Graphs

To display cumulative dynamic multiplier graphs for each of the explanatory variables in an
EViews equation estimated using ARDL, click on View/ARDL Diagnostics/Dynamic Multi-
plier Graph...

EViews will open a dialog containing display and computation settings:

46—Chapter 4.Econometrics and Statistics

• You may enter the horizon length (number of periods to compute the multipliers)
in the Horizon edit field.

• For NARDL models, you will be offered the opportunity to display confidence inter-
vals for the computed absolute difference between the positive and negative compo-
nents for a given regressor. CIs are not available for linear ARDL specifications.

You may check the Show CI to display the CIs, and Shade CI band to display the CIs
as bands instead of lines. The Level edit field controls the size of the CI, and the Rep-
lications governs how many replications to use in resampling for computing the CI.

Click on OK to continue. EViews will open a spool view, with each node in the spool con-
taining the CDM graph corresponding to one of the explanatory variables.

For symmetric linear models, each graph contains a CDM along with a dashed horizontal
line denoting the long-run value.

For asymmetric nonlinear models, each graph will show the positive and negative responses
and limit values, along with a line showing the absolute value of the difference between the
two, and if requested, a CI for the absolute difference:

h

Diagnostics in ARDL—47

• See dynmult (p. 150) for command documentation.

Bounds Tests

EViews 13 now performs Pesaran’s (2001) bounds tests for cointegration that are robust to
whether variables of interest are , , or mutually cointegrated. These tests are for-
mulated as standard F-test or Wald tests of parameter significance in the cointegrating rela-
tionship of the Conditional Error Correction model for each cross-section.

To perform the bounds tests, click on View/ARDL Diagnostics/Bounds Tests. The results of
the test performed are presented in the first table of a spool. Below the table of long run
coefficient estimates are two additional tables, respectively titled as the -Bounds Test and
the -Bounds Test.

I 0 I 1

F
t

48—Chapter 4.Econometrics and Statistics

Testing for Asymmetry

The NARDL specification is quite general and can accommodate asymmetries in different
combinations of short and long-run dynamics. From an estimated NARDL, you may test
long-run symmetry restrictions and/or short-run symmetry restrictions.

To perform the symmetry tests on the estimated NARDL, click on View/ARDL Diagnostics/
Symmetry Test from an estimated equation:

Diagnostics in Panel ARDL/PMG—49

• See symmtest (p. 276) for command documentation.

Diagnostics in Panel ARDL/PMG

In addition to the support for asymmetric ARDL/PMG specifications, EViews 13 offers a
number of new PMG diagnostics to help you examine long-run relationships and evaluate
the appropriateness of your specification.

• New views make it easier to use the PMG estimates to examine the short and long-
run representations of the distributed lag regressors and cointegrating relationships.
(“Cross-sectional Cointegration Views” on page 50.)

• Cross-section bounds tests are for cointegration are now available as a view of your
ARDL equation (“Cross-sectional Bounds Tests” on page 51).

• You may evaluate symmetry restrictions on the coefficients of asymmetric long and
short-run regressors (“Testing for Asymmetry” on page 52).

• You may perform a Hausman-test of the similarity of the PMG estimator to the mean-
group (MG) and dynamic fixed effects (DFE) estimators (“Similarity Tests” on
page 53).

For a preliminary version of the new ARDL chapter in User’s Guide II which discusses a vari-
ety of these features in non-panel settings, see “Linear and Nonlinear ARDL” on page 315.

Coefficient symmetry tests
Null hypothesis: Coefficient is symmetric
Degrees of freedom (simple tests): F(1,194), Chi-square(1)
Degrees of freedom (joint tests): F(2,194), Chi-square(2)
Equation: EX4

Variable Statistic Value Probability

Long-run

LOG(REALGOVT) F-statistic 0.525997 0.4692
 Chi-square 0.525997 0.4683

Short-run

LOG(REALGOVT) F-statistic 0.077094 0.7816
 Chi-square 0.077094 0.7813

Joint (Long-Run and Short-Run)

LOG(REALGOVT) F-statistic 0.493551 0.6112
 Chi-square 0.987102 0.6105

50—Chapter 4.Econometrics and Statistics

Cross-sectional Cointegration Views

The Error Correction Results view displays coefficient results for the error correction regres-
sions for each cross-section. Select View/ARDL Diagnostics/Cross-sectional Error-correc-
tion Results to display a spool of tables with results for each cross-section:

• See ecresults (p. 154) for command documentation

The Cointegrating Relations Plots view displays information about the error correction term
 representing the cointegrating relation. Select View/ARDL Diagnostics/Cross-sec-

tional Cointegrating Relations Plots to display a spool of plots for each cross-section:
ECt

Diagnostics in Panel ARDL/PMG—51

• See cointrel (p. 137) for command documentation.

Cross-sectional Bounds Tests

EViews 13 now performs Pesaran’s (2001) bounds tests for cointegration that are robust to
whether variables of interest are , , or mutually cointegrated. These tests are for-
mulated as standard F-test or Wald tests of parameter significance in the cointegrating rela-
tionship of the Conditional Error Correction model for each cross-section.

To perform the bounds tests, click on View/ARDL Diagnostics/Cross-sectional Bounds
Tests. The results of the test performed on each cross-section are presented in the first table
of a spool. Below the table of long run coefficient estimates are two additional tables,
respectively titled as the -Bounds Test and the -Bounds Test.

I 0 I 1

F t

52—Chapter 4.Econometrics and Statistics

• See boundstest (p. 118) for command documentation

Testing for Asymmetry

One can test for symmetry formally by performing the usual t-test or F-test of parameter
equality. For example, testing for symmetry for a specific long-run (LR) variable, say , is
equivalent to the following hypothesis:

(4.1)

xj

H0: lj
+

lj
–

H1: lj
+

lj
–

Enhanced Impulse Response Display—53

To perform the symmetry test, select View/ARDL Diagnostics/Symmetry Test from the
menu of a nonlinear asymmetric NARDL/PMG equation:

• See symmtest (p. 276) for command documentation

Similarity Tests

We may easily perform a Hausman test on the similarity of the PMG estimator to the mean-
group (MG) and dynamic fixed effects (DFE) estimators. To conduct the test, click on ARDL
Diagnostics/PMG Similarity Test:

• See similarity (p. 273) command documentation

Enhanced Impulse Response Display

EViews 13 offers considerably more control over the computation and display of impulse

response (and variance decomposition) confidence intervals. You may now display multiple

confidence intervals with user-specified sizes in a single graph, and employ shading to

improve the visibility of these intervals.

Recall that previous versions of EViews imposed important restrictions on the display of

impulse response confidence intervals.

• First, for impulse-response confidence intervals computed using analytic or Monte
Carlo standard errors, EViews only allowed for the computation of +/- 2 standard

54—Chapter 4.Econometrics and Statistics

error bands. There were no options for displaying different sized intervals, let alone
for displaying different intervals in the same graph:

• Second EViews only allowed you to use dotted lines to display the confidence bands
around the impulse-responses:

• Lastly, if you chose to display multiple impulses or responses in a combined graphs,
confidence intervals were not available:

Enhanced Impulse Response Display—55

Fortunately, EViews 13 removes all three of these limitations.

• First, by default, EViews 13 now uses shaded areas to depict confidence bands:

56—Chapter 4.Econometrics and Statistics

To display your graphs using the traditional lines, check the box next to Display
intervals using lines in the impulse response dialog. If coming from the command
line, you may use the uselines keyword in the impulse command options to dis-
play in the previous format.

• Second, EViews 13 now lets users display analytic and monte carlo confidence inter-
vals with one or more user-specified sizes:

Enhanced Impulse Response Display—57

When multiple shaded bands are displayed, EViews automatically uses the new
EViews 13 line and shade transparency engine (“Graph Line and Shade Transpar-
ency” on page 13) to display the bands using gradients:

Using the selection interface to focus on the topmost left graph, better shows the
shading:

• Further, EViews 13 now allows you to display confidence intervals in the impulse-
response combined graphs view:

58—Chapter 4.Econometrics and Statistics

All of the new shading and multiple band support is also provided for variance decomposition

in multiple graph

Enhanced Impulse Response Display—59

and combined graph settings,

60—Chapter 4.Econometrics and Statistics

• See impulse (p. 216) and vdecomp (p. 276), for updated command documentation.

Forecast Sample Setting Commands

EViews 13 offers a small but surprisingly useful improvement in forecast sample setting.

Previously, forecasting via command generally required the user to first set the global smpl
using a smpl statement prior to issuing the forecasting command. For example, the follow-
ing lines estimated the equation using one sample, and then forecast over two different sam-
ples,

smpl 1990q1 2010q4

equation eq1.ls y c x1 x2 x3

smpl 2011q1 2020q4

eq1.forecast fcst1

smpl 2008q3 2020q4

eq2.forecast fcst2

Enhanced Impulse Response Display—61

In this case, setting the global sample prior to equation forecasting was only mildly inconve-
nient. However, in some settings, particularly those involving non-equation forecasting
where you are generating multiple forecasts and data, setting and resetting the global sam-
ple was inconvenient at best, and prone to error.

EViews 13 solves this problem by updating most forecast-generating commands to take a
forecast sample information.

In this context, there are two types of forecasting procedures.

In the first set of procedures, the forecast sample is set independently of the remainder of
the procedure. For these cases, EViews 13 offers an option to allow you to set the sample
range pair directly using the option:

This option is available interactively and in commands for:

Equation Procs
fitstatic forecast (p. 174). (updated)

forcavg..................average forecasts of a series (p. 182). (updated)

forecastdynamic forecast (p. 180). (updated)

The second type of forecasting procedure sets the forecast sample one-period beyond a pre-
viously specified estimation sample, and then forecasting continues from that period onward
until a forecast endpoint. In this case, EViews 13 allows you to set the forecast sample in
two distinct ways: by specifying the number of periods to forecast, or by specifying the fore-
cast end date:

These options are available interactively and in commands for:

Series Procs

autoarmaforecast from a series using an ARIMA model with automatic deter-
mination of the specification (p. 115). (updated)

etsperform Error-Trend-Season (ETS) estimation and exponential
smoothing (p. 154). (updated)

Example

Our earlier example is now:

smpl 1990q1 2010q4

equation eq1.ls y c x1 x2 x3

forcsmpl =
smpl

Fit sample (optional). If forecast sample is not provided,
the workfile sample will be employed.

forclen=int Number of periods to forecast.

forc="date" Specify the date of the forecast end point.

62—Chapter 4.Econometrics and Statistics

eq1.forecast(forcsmpl="2011q1 2020q4") fcst1

eq1.forecast(forcsmpl="2008q3 2020q4") fcst2

Chapter 5. Data Handling

EViews 13 offers powerful new features for working with data featuring support for the following
popular data sources and file formats:

Data Handling

• Daily data seasonal adjustment (“Daily Data Seasonal Adjustment” on page 63).

• New and improved Excel file writing engine (“New Excel File Writing Engine” on
page 65).

• Enhanced holiday family of functions to return the proportion of an annual event associ-
ated with each observation (“Holiday Functions” on page 65).

Data Sources and File Formats

• Australian Bureau of Statistics SDMX (“SDMX Databases,” on page 69).

• Deutsche Bundesbank SDMX (“SDMX Databases,” on page 69).

• Insee SDMX (“SDMX Databases,” on page 69).

• Trading Economics (“Trading Economics,” on page 72).

• World Health Organization (“World Health Organization,” on page 77).

Matrix Language Support

• Improved data import and export from matrix objects (“New Data import/export engine,”
on page 81).

• Expanded support for row and column labeling (“Row and Column Label Support,” on
page 83).

• Improved data access to matrix object data (“Matrix Data Access,” on page 86)

Data Handling

Daily Data Seasonal Adjustment

EViews 13 adds the ability to perform seasonal adjustment on daily data, by featuring an
extended implementation of the seasonal adjustment of daily time series algorithm of Ollech
(2021). Although the original Ollech (2021) algorithm is designed for 7-day week daily data,
EViews’ implementation handles both 7 and 5-day week daily data.

64—Chapter 5.Data Handling

To perform DSA seasonal adjustment in EViews, open the series and select Proc/Seasonal
Adjustment/DSA Daily Seasonal Adjustment… EViews will then open a tree-structured
DSA dialog to allow you to set the options for the DSA procedure:

The branches of the tree, on the left, allow you to specify the Basic Options, the ARIMA
model, and the three STL Seasonal Adjustment components. Click on the node name in the
left to select the node.

Data Handling—65

• For extensive description of the new DSA procedure, see “Daily Seasonal Adjust-
ment,” on page 301.

• See dsa (p. 146) for command documentation

New Excel File Writing Engine

Previous versions of EViews used the Excel application itself to write Excel 2007 files
(.XLSX) so that exporting data from an EViews workfile to an Excel 2007 file required that
Excel be installed on your machine. Using Excel to write these files was convenient, but
importantly came with performance and capability limitations.

EViews 13 introduces a new Excel 2007 writing engine that no longer requires installation of
the Excel application. As a result, exporting EViews workfile data to Excel is now much
more efficient, especially when performing a large number of writes. Furthermore, the new
engine allows you to write data into an existing Excel file (via command), an operation that
was not permitted in earlier versions.

For the most part, using the new engine will be transparent to users for previous versions
(apart from the performance improvements). Simply perform your Excel 2007 writes in the
usual fashion. There is, however, a new option “mode=update” which is required for writ-
ing data into an existing Excel file:

tab1.save(t=excelxml, cellfmt=EViews, mode=update) mytable
range=Country!b5

will add the contents of table TAB1 to the preexisting “MyTable.XLSX” Excel file. The data
will be written to the ‘Country’ sheet at cell B5. All preexisting cell formatting in the Excel
file will be overwritten using the cell colors and fonts in TAB1.

Holiday Functions

The @holiday and @holidayset functions return the proportion of an annual event cov-
ered by each observation.

Syntax:

@holiday(event[, basis][, flag...])

@holidayset(event[, basis][, flag...])

For the @holiday function, the event argument is a string specifying either a single date, a
pair of dates (forming a range), or a single named group of holidays.

For the @holidayset function, the event argument is list of dates and/or named groups of
holidays. In either case, each item in the argument has the format

"base[~|!][(offset)][[weights]]"

For example,

66—Chapter 5.Data Handling

@holiday("Jan1")

@holiday("Veterans.us(7)Thanksgiving.us")

@holiday("NewYears[1,2,0]")

@holidayset("Easter! AllSaints! Christmas!")

The basecomponent is either a day-of-the-month specification, e.g. “Dec25”, a n-th-weekday-
of-the-month specification, e.g. “Nov4Thu” (fourth Thursday in November) or “May-1Mon”
(last Monday in May), or a named holiday.

Named Holidays

EViews supports named holidays for common holidays in the G8 countries, including the
following ecclesiastical holidays: “epiphany”, “easterfriday”, “goodfriday”, “easter”, “easter-
monday”, “ascension”, “pentecost”, “whitmonday”, “assumption”, “allsaints”,
“immaculate”, “christmas”, “saintstephen.

Also available are New Years Day (“nyd”, “newyear”, and “newyears”), Lunar New Year
(“cny”, “lny”, and “lunarnewyear”), International Women’s Day (“women” and “wom-
ens”), and International Men’s Day (“men” and “mens”).

Named holidays primarily associated with a specific country are suffixed with a locale code
following ISO 3166-1 alpha-2, i.e., the Internet country codes for top-level domains such as
“.ca” and “.de”. These named holidays are:

• Canada –“victoria.ca”, “discovery.ca”, “canada”, “civic.ca”, “labour.ca”, “thanksgiv-
ing.ca” (also“thanks.ca”), “remembrance.ca”, “boxing.ca”

• France –“labour.fr”, “victory.fr”, “bastille.fr”, “armistice.fr”

• Germany –“labour.de”, “unity.de”

• Italy –“liberation.it”, “labour.it”, “republic.it”

• Russia –“christmas.ru”, “defender.ru”, “springlabour.ru”, “victory.ru”, “russia”,
“unity.ru”

• United Kingdom –“mayday.uk”, “springbank.uk”, “summerbank.uk”, “boxing.uk”

• United States of America –“mlk.us”, “presidents.us”, “memorial.us”, “indepen-
dence.us”, “labor.us”, “columbus.us”, “veterans.us”, “thanksgiving” (also “thanks”)

Note that the named holidays “canada”, “russia”, and “thanksgiving” do not include a suf-
fix, either to avoid redundancy or maintain compatibility with earlier versions of EViews.
Also note that “christmas.ru” is included to reflect the Russian Orthodox Church’s use of the
Julian calendar.

In general, a suffix may be safely added to any named holiday that does not already include
one, e.g.“christmas.us” or “nyd.it”. Unless noted above, such combinations do not alter the

Data Handling—67

nominal date of the holiday but may produce different results when combined with a week-
end modifier (discussed later).

Named Groups

Named groups are preset collections of holidays. EViews currently supports a single named
group, “bank”, for each of the supported locales, i.e., “bank.ca”, “bank.fr”, “bank.de”, etc.,
allowing easy access to the common bank holidays.

The membership of these groups are:

• Canada, “bank.ca” –“nyd goodfriday victoria discovery canada civic labour thanks-
giving remembrance christmas boxing”

• France, “bank.fr” –“nyd eastermonday labour victory ascension whitmonday bastille
assumption allsaints armistice christmas”

• Germany, “bank.de” –“nyd goodfriday eastermonday labour ascension whitmonday
unity christmas saintstephen”

• Italy, “bank.it” –“nyd epiphany easter eastermonday liberation labour republic
assumption allsaints immaculate christmas saintstephen”

• Russia, “bank.ru” –“nyd christmas defender womens springlabour victory russia
unity”

• United Kingdom, “bank.uk” –“nyd goodfriday eastermonday mayday springbank
summerbank christmas boxing”

• United States of America, “bank.us” –“nyd mlk presidents memorial independence
labor columbus veterans thanksgiving christmas”

All named group members have an implied suffix matching the group’s suffix.When using a
named group, the sum of proportion values within a year will equal the number of group
members (ignoring sample effects).

A date or named group may optionally be followed any or all of the following: (1) a week-
end modifier, (2) a parenthetical offset, (3) a bracketed list of weights. For a named group,
these elements will be applied to all of the individual members of the group.

A weekend modifier character “~” or “!” indicate special handling of dates that fall on
weekends. If “~” is used, then the date will be adjusted to the nearest weekday. A date
landing on a Saturday is adjusted to the preceding Friday, and a date landing on a Sunday is
adjusted to the following Monday. If “!” is used with a named holiday, then a more sophisti-
cated set of rules is used to determine when the holiday will be observed, reflecting public
holiday and bank holiday conventions.

68—Chapter 5.Data Handling

In some locales, holidays are observed according to the simple rule encapsulated by the “~”
modifier and thus the two modifiers will behave identically. For example, suppose we are
evaluating “christmas.us!” for the year 2021. That date lands on a Saturday and the holiday
will be observed on the preceding Friday, Dec. 24. However, if evaluating “christmas.uk!”
for the same year, weekend holidays are observed on the nearest following weekday in this
locale, thus the holiday will be observed on Monday, Dec. 27. Similarly, “boxing.uk!” will be
observed on Tuesday, Dec. 28.

A date followed by a parenthetical offset will be adjusted by the given number of days. For
example, “christmas(-1)” could be used to specify Christmas Eve. If a weekend modifier is
also present, e.g. “christmas~(-1)”, the offset is applied after any adjustment made by the
modifier.

A date followed by a bracketed list of weights is considered to occur over multiple days. The
specified weights determine the relative proportion of the holiday occurring on each day,
with the sum of proportions across all days within a year equaling one. The list must contain
an odd number of terms, with the middle term corresponding to the nominal date of the hol-
iday (after adjustment from any weekend modifier or offset). For example, evaluating
“christmas” for a daily workfile would return the value 1 for the observation on Dec. 25 and
the value 0 for all other observations in that year. Evaluating “christmas[1,2,1]” would
return the value 0.25 for the observation on Dec. 24, the value 0.5 for Dec. 25, and the value
0.25 for Dec. 26, returning the value 0 for all other observations.

Several named weight patterns are available as alternatives to explicit weight lists:

• “rampup(n)” – An increasing integer sequence of length ending on the date. For
example, “[rampup(3)]” is equivalent to “[1,2,3,0,0]”.

• “rampdown(n)” – A decreasing integer sequence of length beginning on the date.
For example, “[rampdown(3)]” is equivalent to “[0,0,3,2,1]”.

• “ramp(n)” –An increasing and then decreasing integer sequence centered on the
date. For example, “[ramp(3)]” is equivalent to “[1,2,3,2,1]”.

Note that weights may not be included when a pair of dates is used to specify a range in
@holiday. The optional basis parameter may be to specify that only certain day of the week
or times of day should be included as part of the holiday. This parameter has the format

"start_weekday-end_weekday[, start_time-end_time]"

e.g. “mon-thu” or “mon-sun,10am-4pm”.

The optional flag parameter supports two options, “binary” and “denorm”. If “binary” is
specified, any non-zero value that would be returned by @holiday is replaced by one, thus
forcing the function to return only zeros and ones. This flag is equivalent to the expression
“@holiday(...)>0”. If “denorm” is specified, then the default normalization steps for
weighted dates (dividing by the sum of weights) and sets or groups of holidays (dividing by

n

n

Data Sources and File Formats—69

the number of distinct holidays) are not performed. For example, the previous
@holiday("christmas[1,2,1]") returned values 0.25, 0.5, and 0.25 on sequential obser-
vations, whereas @holiday("christmas[1,2,1]", "denorm") would return values 1, 2,
and 1.

Data Sources and File Formats

EViews 13 offers direct access to new data sources that offer a large range of publicly avail-
able data.

The remainder of this discussion describes interactive access to each of the data sources.

SDMX Databases

As part of EViews support for SDMX Databases, EViews 13 now offers access to Australian
Bureau of Statistics (ABS) SDMX Web Services, Deutsche Bundesbank SDMX, and Insee
(L’Institut national de la statistique et des études économiques) SDMX data.

Please note that an internet connection is required to obtain SDMX online data. For more
information on the ABS data, see

http://api.data.abs.gov.au

EViews offers a custom interface to SDMX databases. The interface includes a custom
browser for navigating and retrieval of available data.

To start, you must open a database window by selecting File/Open Database… from the
main EViews menus, then selecting a database from the Database/File type dropdown
menu. In addition to the previously supported Eurostat SDMX Database, ECB SDMX Data-
base, UN SDMX Database, IMF SDMX Database, and OECD SDMX Database, you may
now select either ABS SDMX Database, Deutsche Bundesbank SDMX Database, or Insee
SDMX Database to access the ABS data.

EViews will display a dialog similar to the following:

http://api.data.abs.gov.au

70—Chapter 5.Data Handling

 Click OK to open the online database. You will be presented with a standard EViews data-
base representing a connection to data. Click on Browse or Browse-Append to open a cus-
tom database.

Here, we see the interface to the ABS data:

The dialog allows you to select data available within datasets. The browser interface to the
data provides a way to search through the datasets by typing a keyword in the Filter text-
box:

Data Sources and File Formats—71

Select a dataset and click the Next button to display a dialog where you can view and select
series:

72—Chapter 5.Data Handling

The dialog contains a table with all series matching the search. The interface provides a list
of dropdown boxes that contain additional search filter criteria. Clicking a filter drop box, a
user can select one or more options. When selection is finished the results of series will be
updated to match the filter options.

The interface also provides a graph preview of the series data selected.

Once you have found and selected the series of interest, you may drag-and-drop or click the
Export to workfile button to export the series directly into an EViews existing or new work-
file in the usual fashion.

• See dbopen (p. 139) for updated command syntax.

Trading Economics

Trading Economics provides access to a large range of historical and forecast data for eco-
nomic indicators, stock market, government bonds, exchange rates, and commodity prices.

Please note that an internet connection will be required to obtain Trading Economics online
data.

For more information on Trading Economics data subscriptions, please see

https://tradingeconomics.com/analytics/features.aspx

EViews offers a custom interface to the Trading Economics data. To open the Trading Eco-
nomics database, select File/Open Database… from the main EViews menu, then select
Trading Economics from the Database/File type dropdown menu:

When you click on OK, EViews will open a standard database window:

https://tradingeconomics.com/analytics/features.aspx.

Data Sources and File Formats—73

Click on the Browse on the toolbar to open the custom Trading Economics window:

The dialog interface displays five tabs/categories of data: Indicators, Market Currencies,
Market Stocks, Market Commodities, and Market Bonds.

Indicators

If you select the Indicators tab, EViews will offer an option to choose between picking a
country/territory, an indicator category, or doing a search:

74—Chapter 5.Data Handling

You can choose Pick Country/Territory and select a country from the dropdown to see his-
torical and forecast indicators for that country:

Alternatively, you may choose Pick Indicator Category and select a category from the drop-
down box to see historical and forecast indicators:

Data Sources and File Formats—75

Lastly, the user can search for indicators by selecting Search in the dropdown, then select-
ing Term/Keyword or Symbol and then entering an expression in the search text box:

Whichever method you use to display indicators, the user- interface provides a way to filter
through the results. The dialog below displays a table containing the indicator results after
the user picked the country Mexico:

76—Chapter 5.Data Handling

You may filter the results by clicking the drop-down box next to each column header to
show a set of filter checkboxes. Select one or more checkboxes to display selected values or
select All to show all values. Click Reset Filter button to clear all filters.

Markets

The user may also select any of the markets tabs (Market Currencies, Market Stocks, Mar-
ket Commodities, Market Bonds). By default, the dialog displays a table with all the stock
market symbol results you have permission to see based on your subscription.

Data Sources and File Formats—77

The example below shows the selected Market Stocks tab:

You may elect to search for a Term/Keyword or a Symbol.

Once you have found and selected the series of interest, you may drag-and-drop or click the
Export to workfile button to export the series directly into an existing or new EViews work-
file.

For more information click the Browse Trading Economics Stocks link at the bottom of the
dialog to opens the Trading Economics webpage.

• See dbopen (p. 139) for updated command syntax.

World Health Organization

World Health Organization (WHO) provides access to a large range of health-related data
and statistics. Please note that an internet connection will be required to obtain World
Health Organization online data.

For more information on data subscription, please see:

https://www.who.int/data/gho

EViews offers a custom interface to the World Health Organization data. To open the World
Health Organization database, select File/Open Database… from the main EViews menu,
then select World Health Organization from the Database/File type dropdown menu:

https://www.who.int/data/gho.

78—Chapter 5.Data Handling

When you click on OK, EViews will open a standard database window:

Click on Browse to open the custom World Health Organization window:

Data Sources and File Formats—79

To find data available within the World Health Organization, click on the folder icon
Indicators and navigate through the set of nested folders:

Simply click on any folder to move down into subtopics:

80—Chapter 5.Data Handling

The full path of the active folder will be shown in the header at the top of the window. You
can click on any folder within the path to navigate back to that folder. For example, clicking
on By country will move back up a single level to show the country choices. Similarly, click-
ing on the “..” in the window listing will move up a single level.

Alternately you may click on Search By to search for a keyword:

Once you have found and selected the series of interest, you may drag-and-drop (or copy-
and-paste) the series directly into an EViews workfile. For more information click the Open
Browser link at the bottom of the dialog to open the World Health Organization URL.

• See dbopen (p. 139) for updated command syntax.

Matrix Language Support—81

Matrix Language Support

EViews 13 offers improved support for working with matrices, vectors, etc.

New Data import/export engine

An all new data engine makes it easier than ever to get data into and out of external data
sources and offers improved support for different data formats.

Import Data

You may now read directly into an EViews matrix object (matrix, vector, sym) from text
(both ASCII and binary), HTML, Excel XLSX, and Excel 97 XLS files. Excel reads includes
support for named ranges and multiple pages. The new engine supports a number of differ-
ent formats, and features EViews interactive data import wizard which walks you step-by-
step through the data import, providing fine-tuned control of the pending import, previews
of the final data, and command capture.

To read data into a matrix object open the matrix and select Proc/Import Data... EViews
will open the standard file dialog prompting you to select a file:

Double-click to select the file, or highlight the file and click on Open. EViews will open a
data import wizard:

82—Chapter 5.Data Handling

Proceed through the steps of the wizard by filling out the desired values and clicking on
Next, and click on Finish when ready to import the data. EViews will read the data into the
matrix object, resizing the object to match the source size, if possible.

Note that some matrix objects offer some challenges in data import. If you have a vector
import from multi-column data,

• See import (p. 192) for updated command syntax for a representative proc (for a
matrix object).

Export Data

When you are ready to export data from a matrix object, EViews 13 allows you to write to a
number of formats including the various ASCII, binary, HTML, RTF, and Excel formats,
along with LaTeX, Markdown, and PDF files. Importantly, the Excel XLSX export allows you
to write the matrix results into existing Excel files, beginning at a specified cell.

To write the contents of the matrix, select Proc/Export Data... from the matrix menu:

Matrix Language Support—83

Enter a file name in the edit field, or Browse to select a file.

You may change the Data order to transpose the data prior to write, provide options related
to the target file type, such as Advanced Excel Options for XLSX,

which permit writing into an specific sheet and cell of a new or existing file, with or without
formatting.

• See export (p. 161) for updated command syntax for a representative proc (for a
matrix object).

Row and Column Label Support

EViews allows you to attach row and column labels to matrix objects. While prior versions
of EViews offered limited ability to define and use these labels, EViews 13 extends the fea-
ture to the entire family of matrix objects and offers two additional ways in which labels
may be used:

• To label rows and columns in the spreadsheet

• To refer to rows and columns of the matrix when accessing data

84—Chapter 5.Data Handling

By default, there are no row and column labels in matrix objects. When spreadsheets show
the contents of the matrix, the rows are labeled as “R1”, “R2”, etc., and the columns are
labeled as “C1”, “C2”, “C3”, etc.

To define row and column labels, you may open a matrix object display the spreadsheet
view:

By default, there are no labels defined, but you may use the matrix procs setrowlabels
and setcollabels to assign new values:

• See setcollabels (p. 238) and setrowlabels (p. 260) for updated command syn-
tax (a representative entry for the matrix object).

• See clearcollabels (p. 121) and clearrowlabels (p. 122) (for the matrix
object).

For example,

mat01.setcollabels "First" "Alternate"

sets column labels for the first two columns.

By default, these labels will be used in the spreadsheet display of the matrix:

Matrix Language Support—85

The Row/Collabels +/– toggles on and off the display of the labels.

EViews 13 adds the ability to extract data from the matrices using the row and column
labels. For example, with the matrix object, we have matrix data members,

@col(arg)Returns the columns defined by arg.

@dropcol(arg)Returns the matrix with the columns defined by arg removed

@droprow(arg)Returns the matrix with rows defined by arg removed.

@dropsub(arg1, arg2)Returns the matrix with the rows defined by arg1 and columns
defined by arg2 removed.

@row(arg)Returns the rows defined by arg.

@sub(arg1, arg2) ..Returns the matrix with rows defined by arg1 and columns with
defined by arg2.

that all take args that may be integers, vectors of integers, string, or svectors of strings.
Importantly, integer values will correspond to row and column indices. while string values
will correspond to previously defined row and column labels.

Thus, in our example from above,

vector vec1 = mat01.@col("Alternate")

will create the vector VEC1 containing the column labeled with “Alternate” in MATRIX01.
This command is equivalent to

vector vec1 = mat01.@col(2)

See “Matrix Extraction Data Members,” on page 86 for additional discussion.

86—Chapter 5.Data Handling

Matrix Data Access

EViews 13 offers a useful set of tools to facilitate extracting parts of matrices for further use.
Some of the functions described below are available in limited form in prior versions of
EViews, but the new additions round out the suite of functions for accessing data, allowing
for easy-to-use operations that were previously difficult to perform.

Useful Utility Functions

There are four utility functions that are particularly useful for working with matrix data.

Briefly:

• @fill(n1, n2, n3, ...) – return a numeric vector with the specified values.

• @range(n1, n2) – return a numeric vector with the sequential integer values from n1
to n2.

• @seq(s, d, n) – return a numeric vector with the arithmetic sequence of n elements
beginning with s and incrementing by d.

• @sfill("str1", "str2", "str3", ...) – return a svector using the specified double-quote
enclosed strings.

Note that the first three functions create vector objects, while the latter creates an svector
(string vector) object.

These functions are straightforward in intention. While @fill and @seq will work with
arbitrary numeric values, we are interested here in their use in generating vectors of integer
values.

vector idx1 = @fill(1, 2, 4, 5, 7)

creates the vector with elements {1, 2, 4, 5, 7}, while

vector idx2 = @range(1, 5)

creates the vector with elements {1, 2, 3, 4, 5}, and

vector idx3 = @seq(1, 2, 4)

creates the vector with elements {1, 3, 5, 7}, and

svector idx4 = @sfill("apple", "pear", "orange")

creates the svector with the values {“apple”, “pear”, “orange”}.

Matrix Extraction Data Members

The best way to extract data from a matrix object is to use matrix object member functions.
Some of these member functions were available for selected objects in earlier versions and
some are new in EViews 13. Nevertheless, all of the functions have enhanced scope in

Matrix Language Support—87

EViews 13 along with new functionality for referencing data using matrix row and column
labels.

The relevant functions are:

• obj.@col(arg) – returns matrix object containing column(s) of obj associated with
arg

• obj.@row(arg) – returns matrix object containing row(s) of obj associated with arg

• obj.@sub(arg1, arg2) – returns matrix object containing row(s) and col(s) of obj
associated with arg1 and arg2, respectively

• obj.@dropcol(arg) – returns matrix object containing column(s) of obj not associated
with arg

• obj.@droprow(arg) – returns matrix object containing row(s) of obj not associated
with arg

• obj.@dropsub(arg1, arg2) – returns matrix object containing row(s) and col(s) of obj
not associated with arg1 and arg2, respectively

For symmetric matrices,

• obj.@sub(arg) – returns sym object containing row(s) and col(s) of obj associated
with arg, respectively

• obj.@dropsub(arg) – returns sym object containing row(s) and col(s) of obj not
associated with arg, respectively

where

• obj is the name of a matrix object in the workfile

• arg, arg1, arg2 are integers, scalar objects, vectors, or svectors

For cases where args are numeric, the arg values act as row or column indices. Focusing on
column functions, we have, for example,

vector v1 = x.@col(3)

matrix m1 = x.@col(cid)

where X is a matrix and CID is a vector of column indices, and the two lines return the vec-
tor V1 and matrix M1 containing the 3rd column of X, and the columns of X referenced in
CID, respectively. Note that the elements of CID must be integers from 1 to the number of
columns of X.

For cases where args are strings, the arg values are examined to find matches in the corre-
sponding row or column labels (“Row and Column Label Support,” on page 83). For exam-
ple,

88—Chapter 5.Data Handling

vector v2 = x.@col("apple")

matrix m2 = x.@col(scid)

were SCID is a svector of strings, and the two lines return the vector V1 and matrix M1 con-
taining the 3rd column of X, and the columns of X with labels that match the elements of
SCID, respectively. Note that the elements of SCID must be strings that match the column
names previously assigned to X.

You may mix the types of arg1, arg2 in data member functions that take two arguments so
that, for example,

matrix m3 = x.@sub(3, "apple")

returns M3 containing the element of X in row 3 and column with label “apple”.

Similarly, the commands

matrix v1d = x.@dropcol(3)

matrix m1d = x.@dropcol(cid)

matrix v2d = x.@dropcol("apple")

matrix m2d = x.@dropcol(scid)

matrix m3d = x.@dropsub(5, "apple")

return the matrix objects

• V1D – the matrix X with column 3 dropped

• M1D – the matrix X with columns referenced by CID dropped

• V2D – the matrix X with the column with label “apple” dropped

• M2D – the matrix X with the columns with labels in SCID dropped

• M3D – the matrix with the row 5 dropped and the column labeled “apple” dropped

Matrix Extraction with Utility Functions

Combining matrix utility functions (“Useful Utility Functions,” on page 86) with the matrix
extraction data members offers quite flexible methods for obtaining data from matrices.

Consider, for example, the extraction of multiple columns from the matrix X using the @col
data member function:

vector xid = @fill(1, 3, 5, 9)

matrix xsub = x.@col(xid)

extracts columns {1, 3, 5, 9} from the matrix X.

Since the args in the member data extraction functions may themselves be expressions, we
may combine the two lines into a single expression:

Matrix Language Support—89

matrix xsub1 = x.@col(@fill(1, 3, 5, 9))

Similarly, extracting or dropping the 7 through 9th columns of X may be done using

matrix xsub2 = x.@col(@range(7, 9))

matrix xsub3 = x.@dropcol(@range(7, 9))

We can perform the same compound extractions in 2-dimensions, as in

matrix xsub4 = x.@sub(@range(3, 6), @sfill("apple", "orange"))

matrix xsub5 = x.@dropsub(4, @sfill("apple", "orange"))

which create XSUB4 containing rows 3 to 6 and columns with labels matching “apple” and
“orange” of X, and XSUB5 containing X after dropping row 4 and the columns with match-
ing labels.

90—Chapter 5.Data Handling

Preliminary Updates to Function Reference

EViews 13 offers a number of new functions

Cumulative Statistic Functions

Workfile Functions

@holiday.............. returns the proportion of an annual event covered by each observation
(p. 92). (updated)

@holidayset.......... return the proportion of an annual set of events covered by each obser-
vation (p. 92). (updated)

Support Functions

@makevalidname . string containing an uppercased valid EViews name based on the input
(p. 93).

@xtype................. returns the string describing the type of the active external application
(p. 102).

String Function Summary

String Functions
@str returns a string representing the given number (p. 94). (updated)

@val returns the number that a string represents (p. 99). (updated)

@wreplace replaces parts of a string based on patterns (p. 102). (updated)

Function Name Description

@cumdp(x, "date", [,s]) cumulative sum of
positive differences

cumulative (partial sum) process
of positive changes around a
threshold value at “date”.

@cumdn(x, "date", [,s]) cumulative sum of
negative differences

cumulative (partial sum) processes
of negative changes around a
threshold value at “date”.

92—Preliminary Updates to Function Reference

Matrix Command and Function Summary

Matrix Utility Functions
@range Returns a vector holding the sequential integers staring at l and

ending at h (p. 98). (new)

@sfill Returns a svector containing the elements specified by the argu-
ments to the function. (p. 99) (new)

Syntax: @holiday(event[, basis][, flag...])

returns the proportion of an annual event covered by each observation. The event argument
is a string specifying either a single date, a pair of dates (forming a range), or a single named
group of holidays. Each item in the argument has the format

"base[~|!][(offset)][[weights]]"

The base component is either a day-of-the-month specification, e.g. “Dec25”, a n-th-week-
day-of-the-month specification, e.g. “Nov4Thu” (fourth Thursday in November) or “May-
1Mon” (last Monday in May), or a named holiday.

For example,

@holiday("Jan1")

@holiday("Veterans.us(7)Thanksgiving.us")

@holiday("NewYears[1,2,0]")

Cross-references

See “Holiday Functions,” on page 65 for extensive discussion and additional syntax. See also
@holiday (p. 92).

Syntax: @holidayset(event[, basis][, flag...])

return the proportion of an annual set of events covered by each observation. The event
argument is a list of dates and/or named groups of holidays. Each item in the argument has
the format

"base[~|!][(offset)][[weights]]"

@holiday

@holidayset

@range—93

The base component is either a day-of-the-month specification, e.g. “Dec25”, a n-th-week-
day-of-the-month specification, e.g. “Nov4Thu” (fourth Thursday in November) or “May-
1Mon” (last Monday in May), or a named holiday.

For example,

@holidayset("Easter! AllSaints! Christmas!")

Cross-references

See “Holiday Functions,” on page 65 for extensive discussion and additional syntax. See also
@holiday (p. 92).

Syntax: @makevalidname(str)

Argument: string, str

Return: string, name

Returns a string containing an uppercased valid EViews name based on str. If str is a valid
name, then the original string str is returned. If str is not valid, invalid characters will be
replaced in the new string with “_” prior to the return (i.e. the string “re!sult%” will return
“RE_SULT_”).

Cross-references

See also @isvalidname (p. 787) and @getnextname (p. 784).

Syntax: @range(x, y)

Argument 1: integer, x

Argument 2: integer, y

Return: vector

Returns a vector holding the sequential integers staring at x and ending at y.

Example:

@range(1, 10)

@range(17, 20)

@range(10, -1)

See also @seqm (p. 756).

@makevalidname Support Functions

@range Matrix Utility Functions

94—Preliminary Updates to Function Reference

Syntax: @sfill("str1", "str2", "str3", ..)

Arguments: scalar

Return: svector

Returns a svector containing the elements specified by the arguments to the function. The
vector will have length equal to the number of arguments. The maximum number of argu-
ments is 96.

Example

svector idx4 = @sfill("apple", "pear", "orange")

creates the svector with the values {“apple”, “pear”, “orange”}.

See @fill (p. 83), Vector::fill (p. 1065), Coef::fill (p. 25), Matrix::fill (p. 492),
Rowvector::fill (p. 619), and Sym::fill (p. 870) for routines to perform general filling
of matrix objects.

Syntax: @str(d[, fmt])

Argument 1: scalar or vector or series d

Argument 2: numeric format string, fmt

Return: string or svector or alpha series

Returns a string representing the given number or a vector or alpha series containing the
string representations of the values in d. You may provide an optional format string. (See
also @val (p. 99) to convert strings into numbers.)

EViews offers a variety of ways to write your number as a string. By default, EViews will for-
mat the number string using 10 significant digits, with no leading or trailing characters, no
thousands separators, and an explicit decimal point.

(The default conversion is equivalent to using @str with the format “g.10” as described
below.)

If you wish to write your number in a different fashion, you must provide an explicit format
string. A numeric format string has the format:

[type][t][+][(][$][#][<|=|>][0][width][[.|..]precision][%][)]

@sfill Matrix Utility Functions

@str String Functions

@str—95

There are a large number of syntax elements in this format but we may simplify matters
greatly by dividing them into four basic categories:

• format: [type]

• width: [<|=|>][width]

• precision: [precision]

• advanced modifiers: the remaining elements (leading and trailing characters, padding
and truncation modifiers, separators, display of negative numbers)

The type, width, and precision components are the basic components of the format so we
will focus on them first. We describe the advanced modifiers in “Modified Formats” on
page 97.

Basic Formats

EViews offers formats designed for both real-valued and integer data.

Basic Real-Value Formats

The basic real-value format is:

[type][<|=|>][width][.][precision]

The type component is a single character indicating the basic type and the width and preci-
sion arguments are numbers indicating the number of output characters and the precision at
which the numbers should be written. If specified, the precision should be separated from
the type and width portion of the format by a “.” character (or “..” as we will see in “Modi-
fied Formats” on page 97).

If you specify a format with neither width nor precision, EViews will format the number at
full precision with matching string width.

The following types are for use with real-valued data:

g significant digits

z significant digits with trailing zeros

c fixed characters with single leading space for posi-
tive numbers

f fixed decimal places

e scientific/float

p percentage (same as “f” but values are multiplied
by 100)

s suppressed decimal point format

r ratio, e.g., “30 1/5”

96—Preliminary Updates to Function Reference

The type character may be followed by a width specification, consisting of a width indicat-
ing the number of output characters, optionally preceded by a “>”, “=” or “<” modifier.

• If no width is provided, the number will be rendered in a string of the exact length
required to represent the value (e.g., the number 1.23450 will return “1.2345”, a
string of length 6).

• If an unmodified width or one with the “>” modifier is provided, the specified num-
ber places a lower-bound on the width of the string: the output will be left-padded to
the specified width, if necessary, otherwise the string will be lengthened to accommo-
date the full output. By default, padding will use spaces, but you may elect to use 0’s
by providing an advanced modifier (“Modified Formats” on page 97).

• If the“<” modifier is provided along with width, the width places an upper-bound on
the width of the string: the output will not be padded to the specified width. If the
number of output characters exceeds the width, EViews will return a width-length
string filled with the “#” character.

• If the“=” modifier is provided along with width, the width provides an exact-bound
for the width of the string: the output will be padded to specified width, if necessary.
If the number of characters exceeds the width, EViews will return a width-length
string filled with the “#” character.

If you specify a precision, the interpretation of the value will vary depending on the format
type. For example, precision represents the number of significant digits in the “g” and “z”
formats, the number of characters in the “c” format, and the number of digits to the right of
the decimal in the “f”, “e”, “p”, and “s” formats. For the “r” format, the precision deter-
mines maximum denominator for the fractional portion (as a power-of-10).

The following guidelines are used to determine the precision implied by a number format:

• If you specify a format with only a precision specification, the precision will implicitly
determine the width at which your numbers are written.

• If you specify a format with only a width specification, the width will implicitly deter-
mine the precision at which your numbers are written. Bear in mind that only the
modified width specifications “=width” and “<width” impose binding restrictions
on the precision.

• If you specify a format using both width and precision, the precision at which your
numbers are written will be determined by whichever setting is most restrictive (i.e.,
“f=4.8” and “f=4.2” both imply a formatted number with two digits to the right of
the decimal).)

@str—97

Basic Integer Formats

The basic integer format is:

[type][<|=|>][width]

The type component is a single character indicating the basic type. The following types are
for use with integer data:

If one of the integer formats is used with real-valued data, the non-integer portion of the
number will be ignored. You may specify a width using the syntax and rules described in
“Basic Real-Value Formats” on page 95.

Modified Formats

Recall that the syntax of a numeric format string is given by:

[type][t][+][(][$][#][<|=|>][0][width][[.|..]precision][%][)]

In addition to the basic type, width, and precision specifiers, the formats take a set of modifi-
ers which provide you with additional control over the appearance of your output string:

• You may combine any of the real-value format characters (“g”, “e”, “f”, etc.) with the
letter “t” (“gt”, “et”, “ft”, etc.) to display a thousands separator (“1,234.56”). By
default, the separator will be a comma “,”, but the character may be changed to a “.”
using the “..” format as described below.

• You may add a “+” symbol after the format character (“g+”, “et+”, “i+”) to display
positive numbers with a leading “+”.

• To display negative numbers within parentheses, you should enclose the remaining
portion of the format in parentheses “ft+($8.2)”.

• Add “$” to the format to display a leading “$” currency character.

• You should include a “#” to display a trailing point in scientific notation (e.g.,
“3.e+34”).

• The width argument should include a leading zero (“0”) if you wish padded numbers
to display leading zeros instead of spaces (“g08.2”, “i05”).

• If you added a “t” character to your real-value format type, you may replace the usual
“.” width-precision separator with “..” (“ft<08..2”, “e=7..”, “g..9”, etc.) to reverse the

i integer

h hexidecimal

o octal

b binary

98—Preliminary Updates to Function Reference

thousands and decimal separators so that thousands will be separated by a “.” and
decimal portion by a “,” (“1.234,56”).

• Adding a “%” character to the end of the format adds the “%” character to the end of
the resulting string.

Examples

string num = @str(1.23)

assigns to the string NUM the text “1.23”.

alpha alpha1 = @str(-123.88)

assigns the string “-123.88” to the alpha series ALPHA1.

string num = @str(123456,”z.9”)

returns a string formatted to 9 significant digits with trailing zeros: “123456.000”.

string num = @str(123456,”z.4”)

returns a string formatted to 4 significant digits with trailing zeros: “1.235e+05”. Note that
since the input number has more than 4 significant digits, no trailing zeros are added and
the resulting string is identical to one that would have been produced with a “g.4” format.

string num = @str(126.543,”c.7%”)

returns a string with exactly 7 characters, including a leading space, and a trailing percent
sign: “ 126.5%”.

string num = @str(126.543,"p.7")

converts the number 126.543 into a percentage with 7 decimal places and returns
“12654.3000000”. Note no percent sign is included in the string.

string num = @str(1.83542,"f$5.4")

returns “$1.8354”. The width selection of “5” with an implicit “>” modifier is irrelevant,
since the precision setting of “4”, coupled with the insertion of the “$” symbol yields a
string with more characters than “5”.

string num = @str(1.83542,"f$8.4")

returns “ $1.8354”. Here the width selection is binding, and a leading space has been added
to the string.

string num = @str(1.83542,"f$=5.4")

returns “ $1.84”. The explicit “=” width modifier causes the width setting of “5” to be bind-
ing.

string num = @str(524.784,"r")

converts the number 524.784 into a ratio representation: “524 98/125”.

@val—99

string num = @str(1784.321,"r=3")

will return “###”, since there is no way to represent 1784.321 as a string with only 3 charac-
ters.

string num = @str(543,"b")

converts the number 543 into a binary representation: “1000011111”.

The matrix command

svector svec1 = @str(v1)

converts the numeric values of vector V1 to strings and puts the results in the svector
SVEC1. If the svector SVEC1 exists it will be sized to match the rows of V1 and missing val-
ues will be converted to empty strings.

The series command

alpha a1 = @val(gdp)

creates the alpha series A1 and converts the numeric values of series GDP to string. NA val-
ues will be become empty strings.

Format strings may be used to govern the conversion,

svector svbin = @str(vec1, "e")

converts the numeric values in the vector VEC1 into their strings representation in scientific
notation and assigns them to the svector SVBIN.

See @val (p. 99) to convert a string into a number.

Syntax: @val(arg[, fmt])

Argument 1: string or svector or alpha series, arg

Argument 2: numeric format string, fmt

Return: scalar, vector, or series

Returns the number that string arg represents, or a vector or series containing the converted
values of arg. You may provide an optional numeric format string fmt. (See @str (p. 94) to
convert a number into a string.)

In most cases, EViews will be able to convert your string into the corresponding numeric
value without additional input. If EViews is unable to perform a conversion, it will return a
missing (NA) value.

There are a few important conventions used in the conversion process:

@val String Functions

100—Preliminary Updates to Function Reference

• A leading “$” in the string will be ignored.

• Strings enclosed in “()” or with a leading “–” will be treated as negative numbers. All
other numeric strings, including those with a leading “+” will be treated as positive
numbers. You may not have a leading “+” or “–” inside of the parentheses.

• A trailing “%” sign instructs EViews to treat the input string as a percentage—the
resulting value will be divided by 100.

There are some situations where you must provide a numeric format string so that EViews
can properly interpret your input. The syntax for the format string depends on the type of
number the string represents.

Real-Value Formats

EViews will properly interpret non-delimited decimal and scientific notation numeric input
strings as numbers.

If your string uses “,” to separate thousands, you should specify the “t” format string to
remove “,” delimiters prior to conversion. If the string uses “.” to separate thousands, you
should use “t..” to instruct EViews to remove “.” delimiters.

If your input string represents a number with suppressed decimal format, you should
include a format string beginning with the letter “s”:

EViews will divide the resulting number by 10 raised to the power of the specified precision.
The “s” format specification may be followed by a “t.” or a “t..” specification if necessary.

Integer Formats

You should use the “r”, “h”, “o”, or “b” formats to indicate that your input is in the speci-
fied format. The “i” format is generally not necessary unless you wish to produce a missing
value for a non-integer input string.

Examples

scalar num = @val("$1.23")

assigns the scalar NUM the numeric value 1.23.

s.precision suppressed decimal point format (precision determines
the number of digits to the right of the decimal)

r ratio (e.g., “30 1/5”).

i integer

h hexidecimal

o octal

b binary

@val—101

series ser1 = @val("-$123.88")

returns the value -123.88.

scalar sperct = @val("478%")

divides the value by 100, setting the scalar SPERCT to 4.78.

scalar sratio = @val("(321 1/5)", "r")

sets the scalar SRATIO equal to -321.2

scalar shexa = @val("f01a", "h")

treats the string “f01a” as a hexadecimal number, converts it into the decimal equivalent,
61466, and assigns it to the scalar object SHEXA.

scalar sbin = @val("11110101", "b")

interprets the string “11110101” as a binary number, converts it into the decimal equivalent,
245, and assigns it to the scalar SBIN.

To verify that a value is an integer, you may use the “i” option.

scalar sintna = @val("98.32", "i")

scalar sint = @val("96", "i")

SINTNA will contain a missing value NA since the input represents a non-integer value,
while SINT is set to 96.

You may use @val to convert values in an svector into a vector. The matrix command,

vector v = @val(sv1)

converts the string values of svector SV1 to numeric values and returns the values in the
svector V. If the vector V exists it will be sized to match the rows of SV1 and non-numeric
strings will be converted to NA.

The series command

series x = @val(alpha1)

converts the string values in the alpha series ALPHA1 to numeric values and returns the val-
ues in the series X. Non-numeric strings will be converted to NA.

Format strings may be used to govern the conversion,

vector vbin = @val(svbin, "b")

interprets the strings in the svector SVBIN as binary numbers, converts it into their decimal
equivalents and assigns it to the vector VBIN. If for example, SVBIN contained “110” “001”
and “010”, the resultant VBIN will contain 6, 1, and 2.

See also @str (p. 94).

102—Preliminary Updates to Function Reference

Syntax: @wreplace(str_list, "src_pattern", replace_pattern"[, "all"])

Argument 1: string list, str_list

Argument 2: string pattern, src_pattern

Argument 3: string pattern, replace_pattern

Argument 4: string literal, “all”

Return: string list

Replaces instances of src_pattern in str_list with replace_pattern. The pattern lists may be
made up of any number of “?” (indicates any single character) or “*” (indicates any number
of characters). The pattern is case-sensitive and must exactly match the str_list characters to
be replaced. Only the first instance of src_pattern within each word of str_list is replaced
unless the optional flag “all” is specified (enclosed in quotes), in which case all instances
within each word are replaced.

Example:

@wreplace("ABBC AB", "*B*", "*X*")

replaces the first instance of “B” with “X”, returning the string “AXBC AX”.

@wreplace("ABBC AB", "*B*", "*X*", "all")

replaces all instances of “B” with “X”, returning the string “AXXC AX”.

@wreplace("ABC DDBC", "??B?", "??X?")

replaces all instances of “B” which have two leading characters and one following character,
returning the string “ABC DDXC”.

See also @wdrop (p. 687) and @wkeep (p. 690).

Syntax: @xtype

Return: string

Returns the string describing the type of the active external application:

• R connections return “rconn”.

• Matlab returns “m”.

• Python returns “pyconn”.

@wreplace String Functions

@xtype Support Functions

@xtype—103

Returns an empty string if no external connection is active.

Examples
string y = @xtype

returns “pyconn” if the external application type is Python..

Cross-references

104—Preliminary Updates to Function Reference

Preliminary Updates to Command Reference

This chapter contains preliminary documentation for commands that are new or have been
updated in EViews 13.

Note, that this document is preliminary and is also extracted from a larger document so that
portions may not be formatted properly and cross-reference links to pages and sections may
not work properly.

Preliminary Listing of New and Updated EViews 13 Commands

Coef

Coef Procs

exportsave coef as Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF,
HTML, Enhanced Metafile, PDF, TEX, or MD file on disk (p. 158).
(new)

import...................imports data from a foreign file into the coef object (p. 186).
(updated)

Coef Values

@droprow(arg)Returns the coef with the rows defined by arg removed. arg may be
an integer, vector of integers, string, or svector of strings. Integer
values correspond to rows and string values correspond to previ-
ously defined row labels. (new)

@row(arg)Returns the rows defined by arg. arg may be an integer, vector of
integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(new)

Equations

Equation Methods
ardl.......................least squares with autoregressive distributed lags (p. 112).

(updated)

didestimate a panel equation using the difference-in-difference estima-
tor (p. 143). (new)

lsequation using least squares or nonlinear least squares (p. 112).
(updated)

Equation Views
boundstestperform the Pesaran, Shin and Smith (2001) bounds test of long-run

relationships from an ARDL estimated equation (p. 118). (updated)

106—Preliminary Updates to Command Reference

cointrel................. display information about the cointegrating relation specification
and the coefficients in ARDL estimated equation (p. 137). (new)

didcs compute Callaway-Sant’Anna decomposition for difference-in-differ-
ence estimation (p. 144). (new)

didgbdecomp perform Goodman-Bacon decomposition for difference-in-difference
estimation (p. 144). (new)

didtrends show difference-in-difference trends summary in graphical or tabu-
lar form (p. 146). (new)

dynmult compute dynamic multipliers for long-run regressors in ARDL equa-
tions (p. 150). (new)

ecresults display the conditional error correction (CEC) and error correction
(EC) regression results (p. 154). (new)

similarity.............. compute symmetry test for nonlinear distributed lag variables in
nonlinear ARDL models (p. 273). (new)

symmtest.............. compute symmetry test for nonlinear distributed lag variables in
nonlinear ARDL models (p. 276). (new)

Equation Procs
didmakeeq create an equation object with the underlying fixed-effects estima-

tion of a difference-in-difference equation (p. 145). (new)

fit......................... static forecast (p. 174). (updated)

forecast dynamic forecast (p. 180). (updated)

Equation Values

@varselkept space delimited list of variables kept by model selection. (new)

@varselrejected space delimited list of the variables dropped by model selection.
(new)

Geomap

Geomap Procs

setfillcolor define the fill (background) color used in geomap shapes using
values in a series (p. 245). (updated)

setjust set the display justification for multi-line area labels (p. 259). (new)

setshapelabel set which attribute to use or create a custom label to use when
labeling shapes (p. 263). (new)

Geomap Values

@ids("attr", "val")space delimited string containing the ID numbers of all the
areas which has the matching attribute value for the specified attri-
bute name. (new)

—107

Graph

Graph Procs

datelabelcontrols labeling of the bottom date/time axis in time plots (p. 137).
(updated)

setelemset individual line, symbol, bar and legend options for each series
in the graph (p. 240). (updated)

Group

Group Views

cointtest for cointegration between series in a group (p. 124). (updated)

Group Procs

setfillcolorset custom spreadsheet fill coloring for the group (p. 255).
(updated)

settextcolorset custom spreadsheet text coloring for the group (p. 264).
(updated)

Matrix

Matrix Procs

clearcollabelsclear the column labels in a matrix object (p. 121). (new)

clearrowlabelsclear the row labels in a matrix object (p. 122). (new)

exportsave matrix as Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF,
HTML, Enhanced Metafile, PDF, TEX, or MD file on disk (p. 161).
(new)

import...................imports data from a foreign file into the matrix object (p. 192).
(updated)

resizeresize the matrix object (p. 233) (new).

setcollabelsset the column labels in a matrix object (p. 238). (updated)

setrowlabelsset the row labels in a matrix object (p. 260). (updated)

Matrix Values

@col(arg)Returns the columns defined by arg. arg may be an integer, vector
of integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined column
labels. (updated)

@dropcol(arg)Returns the matrix with the columns defined by arg removed. arg
may be an integer, vector of integers, string, or s svector of strings.
Integer values correspond to rows and string values correspond to
previously defined column labels. (new)

108—Preliminary Updates to Command Reference

@droprow(arg) Returns the matrix with rows defined by arg removed. The arg may
be integer, vectors of integers, strings, or svectors of strings. Integer
values correspond to rows and string values correspond to previ-
ously defined row labels. (new)

@dropsub(arg1, arg2)Returns the matrix with the rows defined by arg1 and columns
defined by arg2 removed. The args may be integers, vectors of inte-
gers, string, or svectors of strings. Integer values correspond to rows
and string values correspond to previously defined row labels.
(new)

@row(arg) Returns the rows defined by arg. arg may be an integer, vector of
integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(updated)

@sub(arg1, arg2).. Returns the matrix with rows defined by arg1 and columns with
defined by arg2. The args may be integers, vectors of integers,
strings, or svectors of strings. Integer values correspond to rows and
string values correspond to previously defined row labels.
(updated)

Rowvector

Rowvector Procs

clearcollabels........ clear the column labels in a rowvector object (p. 121). (new)

clearrowlabels clear the row labels in a rowvector object (p. 123). (new)

export export vector as Excel 2007 XLSX, CSV, tab-delimited ASCII text,
RTF, HTML, Enhanced Metafile, PDF, TEX, or MD file on disk
(p. 164). (new)

import imports data from a foreign file into the vector object (updated)
(p. 198). (updated)

setcollabels........... set the column labels in a rowvector object (p. 238). (new)

setrowlabels set the row labels in a rowvector object (p. 261). (new)

Rowvector Values

@col(arg)............. Returns the columns defined by arg. arg may be an integer, vector
of integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined column
labels. (new)

@dropcol(arg)...... Returns the matrix with the columns defined by arg removed. arg
may be an integer, vector of integers, string, or svector of strings.
Integer values correspond to rows and string values correspond to
previously defined column labels. (new)

—109

Series

Series Procs

autoarmaforecast from a series using an ARIMA model with automatic deter-
mination of the specification (p. 115). (updated)

dsa........................seasonally adjust daily data using the DSA method (p. 146). (new)

etsperform Error-Trend-Season (ETS) estimation and exponential
smoothing (p. 154). (updated)

forcavg..................average forecasts of a series (p. 182). (updated)

setfillcolordefine the fill (background) color used in series spreadsheets
(p. 255). (updated)

settextcolorset custom spreadsheet text coloring for the series (p. 269).
(updated)

smooth..................exponential smoothing (p. 274). (updated)

Svector

Svector Procs

clearcollabelsclear the column labels in a svector object (p. 122). (new)

clearrowlabelsclear the row labels in a svector object (p. 123). (new)

fill.........................fill the svector with the specified values (p. 173). (new)

resizeresize the svector object (p. 234). (new)

setcollabelsset the column labels in a svector object (p. 239). (new)

setrowlabelsset the row labels in a svector object (p. 261). (new)

Svector Values

@droprow(arg)Returns the svector with the rows defined by arg removed. arg may
be an integer, vector of integers, string, or svector of strings. Integer
values correspond to rows and string values correspond to previ-
ously defined row labels. (new)

@row(arg)Returns the rows defined by arg. arg may be an integer, vector of
integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(new)

Sym

Sym Procs

clearcollabelsclear the column labels in a vector object (p. 122). (new)

clearrowlabelsclear the row labels in a vector object (p. 123). (new)

exportsave sym matrix as Excel 2007 XLSX, CSV, tab-delimited ASCII text,
RTF, HTML, Enhanced Metafile, PDF, TEX, or MD file on disk
(p. 167). (new)

110—Preliminary Updates to Command Reference

import imports data from a foreign file into the sym object (updated)
(p. 869). (new)

resize resize the sym object (p. 234). (new)

setcollabels........... set the column labels in a sym object (p. 239). (new)

setrowlabels set the row labels in a sym object (p. 262). (new)

Sym Values

@col(arg)............. Returns the columns defined by arg. arg may be an integer, vector
of integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined column
labels. (new)

@dropcol(arg)...... Returns the matrix with the columns defined by arg removed. arg
may be an integer, vector of integers, string, or svector of strings.
Integer values correspond to rows and string values correspond to
previously defined column labels. (new)

@droprow(arg) Returns the matrix with rows defined by arg1 and columns with
rows defined by arg2 removed. The args may be integer, vectors of
integers, strings, or svectors of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(new)

@dropsub(arg) Returns the sym with the rows and columns defined by arg
removed. arg may be an integer, vector of integers, string, or svector
of strings. Integer values correspond to rows and string values cor-
respond to previously defined row labels. (new)

@dropsub(arg1, arg2)Returns the matrix with the rows defined by arg1 and columns
defined by arg2 removed. The args may be integers, vectors of inte-
gers, string, or svectors of strings. Integer values correspond to rows
and string values correspond to previously defined row labels.
(new)

@row(arg) Returns the rows defined by arg. arg may be an integer, vector of
integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(new)

@sub(arg)............ Returns the sym with rows defined by arg1 and columns with rows
defined by arg2. The args may be integers, vectors of integers,
strings, or svectors of strings. Integer values correspond to rows and
string values correspond to previously defined row labels. (new)

—111

@sub(arg1, arg2) ..Returns the matrix with rows defined by arg1 and columns with
defined by arg2. The args may be integers, vectors of integers,
strings, or svectors of strings. Integer values correspond to rows and
string values correspond to previously defined row labels.
(updated)

Table

Table Procs

fixcolfixes a set of columns to left of the spreadsheet view so that the
leading columns are always in view (p. 179). (new)

fixrowfixes a set of rows at the top of the spreadsheet view so that the
leading rows are always in view (p. 179). (new)

fixrowcolfixes a set of rows at the top and a set of columns to left of a spread-
sheet view so that the leading rows and columns are always in view
(p. 180). (new)

savesave table as Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF,
HTML, Enhanced Metafile, PDF, TEX, or MD file on disk (p. 235).
(updated)

setfillcolorset the fill (background) color of a set of table cells (p. 943).
(updated)

VAR

Var Methods

btvcvarestimate a Bayesian time-varying coefficients VAR specification x
(p. 119). (new)

ecestimate a vector error correction model (p. 151). (updated)

Var View

cointJohansen cointegration test (p. 133). (updated)

impulse.................impulse response functions (p. 216). (updated)

vdecompvariance decomposition (p. 276). (updated)

Var Procs

fitproduce static forecasts from an estimated VAR (p. 174). (updated)

forecastproduce dynamic forecasts from an estimated VAR or VEC (p. 180).
(updated)

Vector

Vector Procs

clearcollabelsclear the column labels in a vector object (p. 122). (new)

clearrowlabelsclear the row labels in a vector object (p. 123). (new)

112—Preliminary Updates to Command Reference

export export vector as Excel 2007 XLSX, CSV, tab-delimited ASCII text,
RTF, HTML, Enhanced Metafile, PDF, TEX, or MD file on disk
(p. 170). (new)

import imports data from a foreign file into the vector object (p. 210).
(updated)

resize resize the vector object (p. 234). (new)

setcollabels........... set the column label for the vector object (p. 240). (updated)

setrowlabels set the row labels for the vector object (p. 262). (updated)

Vector Values

@droprow(arg) Returns the vector with the rows defined by arg removed. arg may
be an integer, vector of integers, string, or svector of strings. Integer
values correspond to rows and string values correspond to previ-
ously defined row labels. (new)

@row(arg) Returns the rows defined by arg. arg may be an integer, vector of
integers, string, or svector of strings. Integer values correspond to
rows and string values correspond to previously defined row labels.
(updated)

Object Container, Data, and File Commands
dbopen open a database (p. 139). (updated)

pageload............... load one or more pages into a workfile from a workfile or a foreign
data source (p. 228). (updated)

pagesave save page into a workfile or a foreign data source (p. 229).
(updated)

wfopen................. open workfile or foreign source data as a workfile (p. 278).
(updated)

wfsave.................. save workfile to disk as a workfile or a foreign data source (p. 293).
(updated)

Programming Commands
deleteaddin........... unregister a program file as an EViews Add-in (p. 142). (new)

xopen................... open a connection to an external application (p. 298). (updated)

Estimate an equation with autoregressive distributed lags using least squares.

Syntax
equation.ardl(options) linear_regs [@ static_regs] [@asy dual_asymmetric_regs]

[@asylr long_run_asymmetric_regs] [@asysr short_run_asymmetric_regs]

ardl Equation Methods

ardl—113

The linear_regs specification is required:

• The linear_regs list should be the dependent variable followed by a list of linear dis-
tributed-lag regressors.

The remaining specifications are optional

• static_regs should be a list of static regressors, not including a constant or trend term.

• dual_asymmetric_regs are distributed-lag regressors which are asymmetric both in the
short-run and long-run.

• long_run_asymmetric_regs regressors are distributed lag-regressors which are asym-
metric in the long-run but symmetric in the short-run.

• short_run_asymmetric_regs are asymmetric regressors which are distributed lag-
regressors which are asymmetric in the short-run but symmetric in the long-run.

You may specify the lag for an individual distributed-lag variable using the
“@fl(variable, lag)” syntax. For instance, if the variable X should use 3 lags, irrespec-
tive of the fixed or automatic lag settings, you may specify this by entering “@fl(x, 3)” in the
regressor list.

Options

determ=arg
(default =
“rconst”)

Johansen deterministic trend type: “none” (no determinis-
tics), “rconst” (restricted constant and no trend), “uconst”
(unrestricted constant and no trend), “rtrend” (unrestricted
constant and restricted trend, “utrend” (unrestricted con-
stant and unrestricted trend).

trend=arg
(deprecated)

Johansen deterministic trend type: Note: this is a
deprecated s option which handles a subset of cases cov-
ered by the “determ=” option: “none” (no deterministics),
“const” (restricted constant and no trend, default),
“uconst” (unrestricted constant and no trend), “linear”
(unrestricted constant and restricted trend, “ulinear” (unre-
stricted constant and unrestricted trend).

fixed Do not use automatic selection for lag lengths. This option
must be used with the “deplags=” and “reglags=”
options.

deplags=int
(default = 4)

Set the number of lags for the dependent variable to int. If
automatic selection is used, this sets the maximum number
of possible lags. If fixed lags are used (the fixed option is
set), this fixes the number of lags.

114—Preliminary Updates to Command Reference

Examples

wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
2.txt

opens example data from Greene (2008, page 685), containing quarterly US macroeconomic
variables between 1950 and 2000.

The following command

equation eq01.ardl(deplags=8, reglags=8) log(realcons)
log(realgdp) @ @expand(@quarter, @droplast)

creates an equation object and estimates an ARDL model with the log of real consumption
as the dependent variable, and the log of real GDP as a dynamic regressor. Quarterly dummy
variables are included as static regressors. Automatic model selection is used to determine
the number of lags of LOG(REALCONS) and LOG(REALGDP).

The command

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)
log(realgdp) @ @expand(@quarter, @droplast)

estimates a second model, replicating Example 20.4 from Greene, with a fixed three lags of
the dependent variable and three lags of the regressor.

equation eq03.ardl(deplags=1, reglags=1, fixed) log(realcons)
log(realgdp) @asy log(realgovt)

reglags=int
(default = 4)

Set the number of lags for the explanatory variables
(dynamic regressors) to int. If automatic selection is used,
this sets the maximum number of possible lags. If fixed
lags are used (the fixed option is set), this fixes the number
of lags for each regressor.

ic=key (default
= “aic”)

Set the method of automatic model selection. key may take
values of “aic” (Akaike information criterion, default),
“bic” (Schwarz criterion), “hq” (Hannan-Quinn criterion)
or “rbar2” (Adjusted R-squared, not applicable in panel
workfiles).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print results.

autoarma—115

The line above estimates an ARDL(1,1,1) model with the log of real consumption as the
dependent variable, the log of real GDP as a linear regressor, and log of real government
expenditures as a dual asymmetric regressor.

equation eq04.ardl(deplags=1, reglags=1, fixed) log(realcons)
log(realgdp) @asy log(realgovt) @asysr log(realinvs)

extends the previous model and estimates an ARDL(1,1,1,1) model by including the log of
real investments as a long-run asymmetric regressor.

equation eq05.ardl(deplags=1, reglags=1, fixed) log(realcons)
log(realgdp) @asy log(realgovt) @asysr log(realinvs) @asylr
log(tbilrate)

The line above extends the previous model and estimates an ARDL(1,1,1,1,1) model by
including the log of treasury bill rates as a short-run asymmetric regressor.

wfopen oecd.wf1

equation eq06.ardl(fixed, deplags=1, reglags=1) log(cons) log(inf)
log(inc)

This example estimates a panel ARDL model using the workfile “OECD.wf1”. This model
replicates that given in the original Pesaran, Shin and Smith 1999 paper. Model selection is
not used to choose the optimal lag lengths, rather a fixed single lag of both the dependent
variable and the regressor are used.

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 321 of User’s Guide
II for further discussion.

Forecast from a series using an ARIMA model with the specification of the model selected
automatically.

Syntax
series.autoarma(options) forecast_name [exogenous_regressors]

autoarma Series Procs

116—Preliminary Updates to Command Reference

Options

tform=arg Specify the type of dependent variable transformation.
arg may be “auto” (automatically decide between log or no
transformation, default), “none” (perform no transforma-
tion), “log” (perform a log transformation), and “bc” (per-
form the Box-Cox transformation.

bc=int Set the power of the Box-Cox transformation. Only applica-
ble if the tform=bc option is used.

diff=int Set the maximum level of differencing to test for. Default
value is 2.

maxar=int Set the maximum number of AR terms. Default value is 4.

maxma=int Set the maximum number of MA terms. Default value is 4.

maxsar=int Set the maximum number of seasonal AR terms. Default
value is 0.

maxsma=int Set the maximum number of seasonal MA terms. Default
value is 0.

periods=int Set the periodicity of the seasonal ARMA terms. This
defaults to the number of observations in a year, based on
current workfile frequency.

avg=key Use forecast averaging, rather than model selection. key
sets the type of averaging to perform, and may take values
of “aic” (SAIC weights), “sic” (BMA weights) or “uni” (uni-
form weights).

select=key Set the model selection criteria. key make take values of
“aic” (Akaike Information Criteria, default), “sic” (Schwarz
Information Criteria), “hq” (Hannan-Quinn criteria) or
“mse” (Mean Square Error criteria). This option is ignored
if the “avg=” option is used.

nonconv Allow non-converged models to be used in model selection
or forecast averaging.

mselen=key Set the percentage of the estimation sample to be used for
MSE calculation. key may take values of “5”, “10”, “15” or
“20”. This option is only applicable if the “select=mse”
option is used.

msetype=key Set the type of forecast to use when calculating MSE. key
may either be “dyn” (dynamic, default), or an integer, n,
between 1 and 12 indicating that an n-step static forecast
should be performed. This option is only applicable if the
“select=mse” option is used.

autoarma—117

Forecast sample options

The forecast sample will start at the observation immediately after the estimation sample
(the current workfile sample). The forecast endpoint is given by either:

If omitted, the end point will be the end of the workfile sample.

Example

The commands

wfopen elecdmd.wf1

elecdmd.autoarma(maxsar=1, maxsma=1, noconv, forclen=20, agraph,
atable, fgraph) elecdmd_f @expand(@month) realgdp tempf

open the workfile “elecdmd.WF1” and then perform automatic forecasting on the series
ELECDMD. The forecasts will be stored in a series called ELECDMD_F. The ARIMAX model
includes exogenous regressors of REALGDP, TEMPF and a set of monthly dummy variables,
created with the @expand keyword.

The number of maximum SAR terms and SMA terms are set to 1 (instead of the default 0).
Model selection is used to determine the best ARMA model, with non-converged models
included in the selection process.

kpsssig=key Set the significance level of the KPSS test when determin-
ing the appropriate level of differencing for the dependent
variable. key may take values of “1”, “5” (default) or “10”.

fgraph Output a forecast comparison graph.

atable Output a selection criteria comparison table

agraph Output a selection criteria comparison graph.

etable Output a final equation output table. Not applicable if the
“avg=” option is used.

eqname=name Create an equation object in the workfile with the same
specification as the final selected equation. Not applicable
if the “avg=” option is used.

seed=num Set the random number generator seed for random starting
values.

prompt Force the dialog to appear from within a program.

p Print results.

forclen=int Number of periods to forecast.

forc="date" Specify the date of the forecast end point.

118—Preliminary Updates to Command Reference

The forecast covers 20 periods, and upon completion, EViews will display a graph of the
Akaike information criteria of each of the ARMA models considered, as well as a table of
each of the selection criteria, and a graph of the each of the forecasts.

Cross-references

See “Automatic ARIMA Forecasting” on page 536 of User’s Guide I for additional discussion.

Perform the Pesaran, Shin and Smith (2001) bounds test of long-run relationships from an
ARDL estimated equation.

This view displays a spool object with the ARDL bounds test diagnostics. The first table is a
summary of the test along with statistic values. The second table summarizes the bound test
critical values associated with the F-statistic. When appropriate (the deterministic case does
not include a restricted constant (cases 3 and 5), a third table summarizes the bound test
critical values associated with the t-statistic.

Syntax
eq_name.boundstest(options)

Options

Examples

wfopen http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF5-
2.txt

equation eq02.ardl(deplags=3, reglags=3, fixed) log(realcons)
log(realgdp) @ @expand(@quarter, @droplast)

show eq02.boundstest

This example uses data from Greene (2008, page 685), containing quarterly US macroeco-
nomic variables between 1950 and 2000. The first line of this example downloads the data
set, the second line creates an equation object and estimates an ARDL model with the log of
real consumption as the dependent variable. Three lags of the dependent variable, and three
lags of the log of real GDP are used as dynamic regressors. Quarterly dummy variables are
included as static regressors.

The final line performs the Pesaran, Shin and Smith (2001) bounds test to test for a long-run
relationship between the log of real consumption and the log of real GDP.

boundstest Equation Views

p Print output.

btvcvar—119

Cross-references

See “Autoregressive Distributed Lag (ARDL) Models,” beginning on page 321 of User’s Guide
II for further discussion.

Estimate a Bayesian time-varying coefficients VAR, or BTVCVAR, model.

Syntax
var_name.btvcvar(options) lag_pairs endog_list [@ exog_list]

btvcvar estimates a Bayesian time-varying coefficients VAR. The order of the VAR is speci-
fied using a lag pair, followed by a list of series or groups for endogenous variables. Exoge-
nous variables can be included using the @-sign followed by a list of series or groups. A
constant is automatically added to the list of exogenous variables; to estimate a specification
without a constant, use the noconst option.

Options
Prior hyper-parameters

btvcvar Var Methods

T0 = int

(default = 0)

Set prior sample size . A prior sample is not used if T0
is set to 0. To use a prior sample, T0 must be set to an inte-
ger larger than the number of coefficients per equation in a
standard VAR version of the model.

tau0 = num

(default = 5.0)

Set prior scaling parameter for the initial state .

tau1 = num

(default = 1.0)

Set prior scaling parameter for the observation covariance
.

nu1 = num

(default = 5.0)

Set prior dof parameter for the observation covariance .

tau2 = num

(default = 0.01)

Set prior scaling parameter for the process covariance .

nu2 = num

(default = 5.0)

Set prior dof parameter for the process covariance .

T0

b0

S

S

Q

Q

120—Preliminary Updates to Command Reference

Display options

MCMC options

Other options

usemean Use posterior mean as the point estimate. The posterior
median is used if usemean is not included in the options
list.

showci Show credibility intervals (bands).

cilevels = arg

(default = "0.95")

Set credibility levels. For multiple levels, enter a space-
delimited list of values surrounded by quotation marks,
e.g., "0.3 0.5 0.8".

uselines Use lines instead of shading for credibility intervals.

burn = int

(default = 5000)

Set burn-in size.

size = int

(default = 5000)

Set posterior sample size.

thin = int

(default = 1)

Set thinning size. A thinning size of indicates that every
-th draw after the burn-in period is stored.

nsub = int Set the number of subchains.

seed = int Set the random seed. EViews will generate a seed if one is
not specified.

rng = arg

(default = “kn” or
method set via rnd-
seed)

Set random number generator type. Available types are:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”), L’Ecuyer’s (1999) combined
multiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

smoother = arg

(default = "CFA")

Set simulation smoothing method. Available methods are
"CFA" (Cholesky factor algorithm), "KFS" (Kalman filter
and smoother), and "MMP" (McCausland, Miller, & Pel-
letier, 2011).

stable Use the method of Cogley & Sargent for obtaining stable
draws.

maxattempts = int

(default = 100)

Set the maximum number of attempts for the sampler to
draw stable VAR coefficients for all dates in the data sam-
ple.

noconst Do not include a constant in the exogenous regressors list.

r
r

clearcollabels—121

Examples

To declare and estimate a BTVCVAR named MYVAR with endogenous variables DGP and
UNEMP, a constant, the first lag, and a prior sample of size 40, run

var myvar.btvcvar(t0=40) 1 1 gdp unemp

in the command window. Running the command

var myvar.btvcvar(t0=40, showci, cilevels="0.3 0.5") 1 1 gdp unemp

will also display shaded 30% and 50% credibility bands. For reproducible results, also set
the number of subchains (nsub), the random seed (seed), and the random number generator
type (rng):

var myvar.btvcvar(t0=40, nsub=12, seed=342458900, rng=kn, showci,
cilevels="0.3 0.5") 1 1 gdp unemp

Command capture will always show the nsub, seed, and rng options.

Cross-references

See Chapter 46. “Bayesian Time-varying Coefficients VAR Models,” on page 927 of User’s
Guide II for details.

Clear the column labels in a matrix object.

Syntax
matrix_name.clearcollabels

Examples

mat1.clearcollabels

clears the custom column labels from the matrix MAT1.

Cross-references

Clear the column labels in a rowvector object.

Syntax
rowvector_name.clearcollabels

clearcollabels Matrix Procs

clearcollabels Rowvector Procs

122—Preliminary Updates to Command Reference

Examples

rvec1.clearcollabels

clears the custom column labels from the rowvector RVEC1.

Cross-references

Clear the column label in a svector object.

Syntax
svector_name.clearcollabels

Examples

svec1.clearcollabels

clears the custom column label from the svector SVEC1.

Cross-references

Clear the column label in a vector object.

Syntax
vector_name.clearcollabels

Examples

vec1.clearcollabels

clears the custom column label from the vector VEC1.

Cross-references

Clear the row labels in a matrix object.

Syntax
matrix_name.clearrowlabels

clearcollabels Svector Procs

clearcollabels Vector Procs

clearrowlabels Matrix Procs

clearrowlabels—123

Examples

mat1.clearrowlabels

clears the custom row labels from the matrix MAT1.

Cross-references

Clear the row label in a rowvector object.

Syntax
matrix_name.clearrowlabels

Examples

rvec1.clearrowlabels

clears the custom row label from the rowvector RVEC1.

Cross-references

Clear the row labels in a vector object.

Syntax
svector_name.clearrowlabels

Examples

svec1.clearrowlabels

clears the custom row labels from the svector SVEC1.

Cross-references

Clear the row labels in a vector object.

Syntax
vector_name.clearrowlabels

clearrowlabels Rowvector Procs

clearrowlabels Svector Procs

clearrowlabels Vector Procs

124—Preliminary Updates to Command Reference

Examples

vec1.clearrowlabels

clears the custom row labels from the vector VEC1.

Cross-references

Perform either (1) Johansen’s system cointegration test, (2) Engle-Granger or Phillips-
Ouliaris single equation cointegration testing, or (3) Pedroni, Kao, or Fisher panel cointe-
gration testing for the series in the group.

There are three forms for the coint command depending on which form of the test you wish
to perform.

Johansen Cointegration Test Syntax
group_name.coint(options) [lag_spec] [@ x1 x2 x3 ...] [@exogsr sx1 sx2 sx3 ...]

[@exoglr lx1 lx2 lx3 ...] [@exogboth bx1 bx2 bx3 ...]

uses the coint keyword followed by options, and optionally,

• a lag_spec consisting of one or more pairs of lag intervals, where the lag orders are for
the differences in the error correction representation of the VEC, not the levels repre-
sentation of the VAR.

• an “@”-sign or “@exogsr” followed by a list of exogenous variables in the short-run
equation only

• “@exoglr” followed by a list of exogenous variables in the long-run relation only

• “@exogboth” followed by a list of exogenous variables in both the long-run relation
and the short-run equations

(This type of cointegration testing may be used in a non-panel workfile except when per-
forming Fisher combined testing using the Johansen framework.)

Note that the output for Johansen cointegration tests displays p-values for the rank test sta-
tistics. These p-values are computed using the response surface coefficients as estimated in
MacKinnon, Haug, and Michelis (1999). The 0.05 critical values are also based on the
response surface coefficients from MacKinnon-Haug-Michelis. Note: the reported critical val-
ues assume no exogenous variables other than an intercept and trend.

coint Group Views

coint—125

Options for the Johansen Test

Deterministic Trend Option

There are 8 different deterministic trend assumptions that you may specify using the
“determ=arg” option.

These cases correspond to whether the intercept (“c”) and the trend (“t”) are either

• not included (“n”)

• in the long-run cointegrating relation only (“l”)

• in the short-run equation only (“s”)

• in both the long and short-run equations (“b”)

The values of arg are text shortcuts formed by joining a text shortcut for the intercept speci-
fication with a text shortcut for the trend specification.

The individual intercept and trend specifications are formed by joining the “c” and the “t”
with the appropriate letter describing inclusion in the long and short-run equations.

For example,

• “cb” indicates that the constant is in both the long and short-run equation

• “tl” indicates that the trend is in the long-run cointegrating equation only

so that

• “cbtl” indicates that the constant is in both the long and short-run and the trend is in
the long-run only

Using this convention (along with a special “none” option), we may easily describe options
arguments for all 8 deterministic cases:

cntn, none Case 1: No deterministic terms.

Corresponding VAR model has no deterministic terms.

cltn Case 2: Restricted constant.

Constant only in the cointegrating relations.

Corresponding VAR has a constant.

cbtn (default) Case 3 (JHJ): Unrestricted constant

Constant included both in the short-run equation and (arti-
ficially) in the cointegrating relations via orthogonalization.

Corresponding VAR has a constant and trend.

cstn Case 3: Unrestricted constant

Constant only in the short-run equation.

Corresponding VAR has a trend.

126—Preliminary Updates to Command Reference

or you may use the “determsummary” option to compute tests under all deterministic
assumptions.

Other Johansen Options

cbtl Case 4 (JHJ): Unrestricted constant and restricted trend

Constant included both in the short-run equation and
(artificially) in the cointegrating relations via
orthogonalization, and trend included only in the cointe-
grating relations.

Corresponding VAR has a constant and trend.

cstl Case 4: Unrestricted constant and restricted trend

Constant only in the short-run equation, and trend only in
the cointegrating relation.

Corresponding VAR has a trend.

cbtb Case 5 (JHJ): Unrestricted constant and trend

Constant and trend both included in the short-run equation
and (artificially) in the cointegrating relations via
orthogonalization.

Corresponding VAR has a constant, linear, and quadratic
trend.

csts Case 5: Unrestricted constant and trend

Constant and trend both included in the short-run equa-
tion.

Corresponding VAR has a linear and quadratic trend.

determsummary Summarize all deterministic trend cases.

restrict Impose restrictions as specified by the “restspec=” option.

restspec="spec" Define the restricted VEC specification where spec is a
space a space delimited list of VEC coefficient restrictions.

m = integer,
maxit = integer

Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar,
cvg = scalar

Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

coint—127

Single Equation Test Syntax
group_name.coint(method=arg, options) [@determ determ_spec] [@regdeterm reg-

determ_spec]

where

Cointegrating equation specifications that include a constant, linear, or quadratic trends,
should use the “trend=” option to specify those terms. If any of those terms are in the sto-
chastic regressors equations but not in the cointegrating equation, they should be specified
using the “regtrend=” option.

Deterministic trend regressors that are not covered by the list above may be specified using
the keywords @determ and @regdeterm. To specify deterministic trend regressors that enter
into the regressor and cointegrating equations, you should add the keyword @determ fol-
lowed by the list of trend regressors. To specify deterministic trends that enter in the regres-

save = mat_name Stores test statistics as a named matrix object. The save=
option stores a matrix, where is the num-
ber of endogenous variables in the VAR. The first column
contains the eigenvalues, the second column contains the
maximum eigenvalue statistics, the third column contains
the trace statistics, and the fourth column contains the log
likelihood values. The i-th row of columns 2 and 3 are the
test statistics for rank . The last row is filled with
NAs, except the last column which contains the log likeli-
hood value of the unrestricted (full rank) model.

cvtype=ol Display 0.05 and 0.01 critical values from Osterwald-
Lenum (1992).

This option reproduces the output from version 4. The
default is to display critical values based on the response
surface coefficients from MacKinnon-Haug-Michelis
(1999). Note that the argument on the right side of the
equals sign are letters, not numbers 0-1).

cvsize=arg
(default=0.05)

Specify the size of MacKinnon-Haug-Michelis (1999) criti-
cal values to be displayed. The size must be between
0.0001 and 0.9999; values outside this range will be reset to
the default value of 0.05. This option is ignored if you set
“cvtype=ol”.

prompt Force the dialog to appear from within a program.

p Print results.

method=arg Test method: Engle-Granger residual test (“eg”), Phillips-
Ouliaris residual test (“po”).

k 1 4 k

i 1–

128—Preliminary Updates to Command Reference

sor equations but not the cointegrating equation, you should include the keyword
@regdeterm followed by the list of trend regressors.

Note that the p-values for the test statistics are based on simulations, and do not account for
any user-specified deterministic regressors.

This type of cointegration testing may be used in a non-panel workfile. The remaining
options for the single equation cointegration tests are outlined below.

Options for Single Equation Tests
Options for the Engle-Granger Test

The following options determine the specification of the Engle-Granger test (Augmented
Dickey-Fuller) equation and the calculation of the variances used in the test statistic.

trend=arg
(default=“const”)

Specification for the powers of trend to include in the
cointegrating equation: None (“none”), Constant (“const”),
Linear trend (“linear”), Quadratic trend (“quadratic”).

Note that the specification implies all trends up to the spec-
ified order so that choosing a quadratic trend instructs
EViews to include a constant and a linear trend term along
with the quadratic.

regtrend=arg
(default=“none”)

Additional trends to include in the regressor equations (but
not the cointegrating equation): None (“none”), Constant
(“const”), Linear trend (“linear”), Quadratic trend (“qua-
dratic”). Only trend orders higher than those specified by
“trend=” will be considered.

Note that the specification implies all trends up to the spec-
ified order so that choosing a quadratic trend instructs
EViews to include a constant and a linear trend term along
with the quadratic.

lag=arg
(default=“a”)

Method of selecting the lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), or integer
(user-specified lag length).

lagtype=arg
(default=“sic”)

Information criterion or method to use when computing
automatic lag length selection: “aic” (Akaike), “sic”
(Schwarz), “hqc” (Hannan-Quinn), “msaic” (Modified
Akaike), “msic” (Modified Schwarz), “mhqc” (Modified
Hannan-Quinn), “tstat” (t-statistic).

maxlag=integer Maximum lag length to consider when performing auto-
matic lag-length selection

default=
where is the number of coefficients in the cointegrating
equation. Applicable when “lag=a”.

int min T k– 3 12,() T 100 1 4()
k

coint—129

Options for the Phillips-Ouliaris Test

The following options control the computation of the symmetric and one-sided long-run
variances in the Phillips-Ouliaris test.

Basic Options

HAC Whitening Options

lagpval=number
(default=0.10)

Probability threshold to use when performing automatic
lag-length selection using a t-test criterion. Applicable
when both “lag=a” and “lagtype=tstat”.

nodf Do not degree-of-freedom correct estimates of the vari-
ances.

prompt Force the dialog to appear from within a program.

p Print results.

trend=arg
(default=“const”)

Specification for the powers of trend to include in the
cointegrating equation: None (“none”), Constant (“const”),
Linear trend (“linear”), Quadratic trend (“quadratic”).

Note that the specification implies all trends up to the spec-
ified order so that choosing a quadratic trend instructs
EViews to include a constant and a linear trend term along
with the quadratic.

regtrend=arg
(default=“none”)

Additional trends to include in the regressor equations (but
not the cointegrating equation): None (“none”), Constant
(“const”), Linear trend (“linear”), Quadratic trend (“qua-
dratic”). Only trend orders higher than those specified by
“trend=” will be considered.

Note that the specification implies all trends up to the spec-
ified order so that choosing a quadratic trend instructs
EViews to include a constant and a linear trend term along
with the quadratic.

nodf Do not degree-of-freedom correct the coefficient covariance
estimate.

prompt Force the dialog to appear from within a program.

p Print results.

lag=arg (default=0) Lag specification: integer (user-specified lag value), “a”
(automatic selection).

infosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

130—Preliminary Updates to Command Reference

HAC Kernel Options

Panel Test Syntax
group_name.coint(option)

The coint command tests for cointegration among the series in the group. This form of the
command should be used with panel structured workfiles.

Options for the Panel Tests

For panel cointegration tests, you may specify the type using one of the following keywords:

Depending on the type selected above, the following may be used to indicate deterministic
trends:

maxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum.

kern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

bw=arg
(default=“nwfixed”)

Bandwidth: “fixednw” (Newey-West fixed), “andrews”
(Andrews automatic), “neweywest” (Newey-West auto-
matic), number (User-specified bandwidth).

nwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric bandwidth selection (if “bw=neweywest”).

bwoffset=integer
(default=0)

Apply integer offset to bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

bwint Use integer portion of bandwidth chosen by automatic
selection method (“bw=andrews” or “bw=neweywest”).

Pedroni (default) Pedroni (1994 and 2004).

Kao Kao (1999)

Fisher Fisher - pooled Johansen

const (default) Include a constant in the test equation.

Applicable to Pedroni and Kao tests.

coint—131

Additional Options:

trend Include a constant and a linear time trend in the test equa-
tion.

Applicable to Pedroni tests.

none Do not include a constant or time trend.

Applicable to Pedroni tests.

determ=arg Indicate deterministic trends as detailed above in “Options
for the Johansen Test” on page 125.

Applicable to Fisher tests.

hac=arg
(default=“bt”)

Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel).

Applicable to Pedroni and Kao tests.

bw=arg
(default=“nw”)

Method of selecting the bandwidth, where arg may be
“nw” (Newey-West automatic variable bandwidth selec-
tion), or a number indicating a user-specified common
bandwidth.

Applicable to Pedroni and Kao tests.

lag=arg For Pedroni and Kao tests, the method of selecting lag
length (number of first difference terms) to be included in
the residual regression. For Fisher tests, a pair of numbers
indicating lag.

infosel=arg
(default=“sic”)

Information criterion to use when computing automatic lag
length selection: “aic” (Akaike), “sic” (Schwarz), “hqc”
(Hannan-Quinn).

Applicable to Pedroni and Kao tests.

maxlag=int Maximum lag length to consider when performing auto-
matic lag length selection, where int is an integer. The
default is

where is the length of the cross-section.

Applicable to Pedroni and Kao tests.

disp=arg
(default=500)

Maximum number of individual results to be displayed.

prompt Force the dialog to appear from within a program.

p Print results.

int min Ti 3 12, Ti 100 1 4()

Ti

132—Preliminary Updates to Command Reference

Examples
Johansen Test

gr1.coint(determsummary) 1 4

summarizes the results of the Johansen cointegration test for the series in the group GR1 for
all specifications of trend. The test equation uses lags of up to order four.

Engle-Granger Test

gr1.coint(method=eg)

performs the default Engle-Granger test on the residuals from a cointegrating equation
which includes a constant. The number of lags is determined using the SIC criterion and an
observation-based maximum number of lags.

gr1.coint(method=eg, trend=linear, lag=a, lagtype=tstat,
lagpval=.15, maxlag=10)

employs a cointegrating equation that includes a constant and linear trend, and uses a
sequential t-test starting at lag 10 with threshold probability 0.15 to determine the number
of lags.

gr1.coint(method=eg, lag=5)

conducts an Engle-Granger cointegration test on the residuals from a cointegrating equation
with a constant, using a fixed lag of 5.

Phillips-Ouliaris Test

gr1.coint(method=po)

performs the default Phillips-Ouliaris test on the residuals from a cointegrating equation
with a constant, using a Bartlett kernel and Newey-West fixed bandwidth.

gr1.coint(method=po, bw=andrews, kernel=quadspec, nodf)

estimates the long-run covariances using a Quadratic Spectral kernel, Andrews automatic
bandwidth, and no degrees-of-freedom correction.

gr1.coint(method=po, trend=linear, lag=1, bw=4)

estimates a cointegrating equation with a constant and linear trend, and performs the Phil-
lips-Ouliaris test on the residuals by computing the long-run covariances using AR(1) pre-
whitening, a fixed bandwidth of 4, and the Bartlett kernel.

Panel Tests

For a panel structured workfile,

grp1.coint(pedroni,maxlag=3,infosel=sic)

performs Pedroni’s residual-based panel cointegration test with automatic lag selection with
a maximum lag limit of 3. Automatic selection based on Schwarz criterion.

coint—133

Cross-references

See Chapter 55. “Cointegration Testing,” on page 1245 of User’s Guide II for details on the
various cointegration tests. See also Equation::coint (p. 71).

Johansen’s cointegration test for the series in the var object.

Syntax
var_name.coint(options) [lag_spec] [@ x1 x2 x3 ...] [@exogsr sx1 sx2 sx3 ...]

[@exoglr lx1 lx2 lx3 ...] [@exogboth bx1 bx2 bx3 ...]

uses the coint keyword followed by options, and optionally,

• a lag_spec consisting of one or more pairs of lag intervals, where the lag orders are for
the differences in the error correction representation of the VEC, not the levels repre-
sentation of the VAR.

• an “@”-sign or “@exogsr” followed by a list of exogenous variables in the short-run
equation only

• “@exoglr” followed by a list of exogenous variables in the long-run relation only

• “@exogboth” followed by a list of exogenous variables in both the long-run relation
and the short-run equations

The coint command tests for cointegration among the series in the var object using the lag
spec, exogenous variables, and if relevant, deterministic spec and VEC restrictions specified
in estimation.

• You may provide explicit lag_spec to override the one used in estimation.

Note that if the estimation lags were for a VAR specification in levels, the default
lag_spec will be the original spec adjusted for the error correction differences. Thus, if
the original estimation was for a “1 4” VAR, the default lag_spec will be “1 3”.

• You may provide a “determ=” option to override an existing VEC deterministic trend
specification.

• You may explicitly list any type of exogenous variable to override the entire existing
specification for the exogenous variables.

The output for cointegration tests displays p-values for the rank test statistics. These p-val-
ues are computed using the response surface coefficients as estimated in MacKinnon, Haug,
and Michelis (1999). The 0.05 critical values are also based on the response surface coeffi-
cients from MacKinnon-Haug-Michelis. Note: the reported critical values assume no exoge-
nous variables other than an intercept and trend.

coint Var Views

134—Preliminary Updates to Command Reference

Options

Deterministic Trend Option

There are 8 different deterministic trend assumptions that you may specify using the
“determ=arg” option.

These cases correspond to whether the intercept (“c”) and the trend (“t”) are either

• not included (“n”)

• in the long-run cointegrating relation only (“l”)

• in the short-run equation only (“s”)

• in both the long and short-run equations (“b”)

The values of arg are text shortcuts formed by joining a text shortcut for the intercept speci-
fication with a text shortcut for the trend specification.

The individual intercept and trend specifications are formed by joining the “c” and the “t”
with the appropriate letter describing inclusion in the long and short-run equations.

For example,

• “cb” indicates that the constant is in both the long and short-run equation

• “tl” indicates that the trend is in the long-run cointegrating equation only

so that

• “cbtl” indicates that the constant is in both the long and short-run and the trend is in
the long-run only

Using this convention (along with a special “none” option), we may easily describe options
arguments for all 8 deterministic cases:

cntn, none Case 1: No deterministic terms.

Corresponding VAR model has no deterministic terms.

cltn Case 2: Restricted constant.

Constant only in the cointegrating relations.

Corresponding VAR has a constant.

cbtn (default) Case 3 (JHJ): Unrestricted constant

Constant included both in the short-run equation and (arti-
ficially) in the cointegrating relations via orthogonalization.

Corresponding VAR has a constant and trend.

cstn Case 3: Unrestricted constant

Constant only in the short-run equation.

Corresponding VAR has a trend.

coint—135

or you may use the “determsummary” option to compute tests under all deterministic
assumptions.

Other Options

cbtl Case 4 (JHJ): Unrestricted constant and restricted trend

Constant included both in the short-run equation and
(artificially) in the cointegrating relations via
orthogonalization, and trend included only in the cointe-
grating relations.

Corresponding VAR has a constant and trend.

cstl Case 4: Unrestricted constant and restricted trend

Constant only in the short-run equation, and trend only in
the cointegrating relation.

Corresponding VAR has a trend.

cbtb Case 5 (JHJ): Unrestricted constant and trend

Constant and trend both included in the short-run equation
and (artificially) in the cointegrating relations via
orthogonalization.

Corresponding VAR has a constant, linear, and quadratic
trend.

csts Case 5: Unrestricted constant and trend

Constant and trend both included in the short-run equa-
tion.

Corresponding VAR has a linear and quadratic trend.

determsummary Summarize all deterministic trend cases.

restrict Impose restrictions as specified by the Var::append
(p. 995) proc, or the “restspec=” option.

restspec="spec" Define the restricted VEC specification where spec is a
space a space delimited list of VEC coefficient restrictions.

m = integer,
maxit = integer

Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar,
cvg = scalar

Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

136—Preliminary Updates to Command Reference

Examples

var1.coint(determ=cbtl) 1 12 @

carries out the Johansen test for the series in the var object named VAR1 using lags 1 to 12.
The “@”-sign without a list of exogenous variables ensures that the test does not include
any exogenous variables in VAR1.

Cross-references

See “Johansen Cointegration Test” on page 1245 of User’s Guide II for details on the Johan-
sen test.

See also ::ec (p. 151).

save = mat_name Stores test statistics as a named matrix object. The save=
option stores a matrix, where is the num-
ber of endogenous variables in the VAR. The first column
contains the eigenvalues, the second column contains the
maximum eigenvalue statistics, the third column contains
the trace statistics, and the fourth column contains the log
likelihood values. The i-th row of columns 2 and 3 are the
test statistics for rank . The last row is filled with
NAs, except the last column which contains the log likeli-
hood value of the unrestricted (full rank) model.

cvtype=ol Display 0.05 and 0.01 critical values from Osterwald-
Lenum (1992).

This option reproduces the output from version 4. The
default is to display critical values based on the response
surface coefficients from MacKinnon-Haug-Michelis
(1999). Note that the argument on the right side of the
equals sign are letters, not numbers 0-1).

cvsize=arg
(default=0.05)

Specify the size of MacKinnon-Haug-Michelis (1999) criti-
cal values to be displayed. The size must be between
0.0001 and 0.9999; values outside this range will be reset to
the default value of 0.05. This option is ignored if you set
“cvtype=ol”.

prompt Force the dialog to appear from within a program.

p Print results.

k 1 4 k

i 1–

datelabel—137

Display information about the cointegrating relation specification and the coefficients in an
ARDL estimated equation.

Syntax
eq_name.cointrel(options)

Options

Example
ardl_eq.cointrel

displays a spool object with the table and graph showing the cointegrating relation.

Cross-references

Control labeling of the bottom date/time axis in time plots.

datelabel sets options that are specific to the appearance of time/date labeling. Many of
the options that also affect the appearance of the date axis are set by the Graph::axis
(p. 317) command with the “bottom” option. These options include tick control, label and
font options, and grid lines.

Syntax
graph_name.datelabel option_list

cointrel Equation Views

p Print output.

datelabel Graph Procs

138—Preliminary Updates to Command Reference

Options

Examples

graph1.datelabel format(yyyy:mm)

format("datestring") datestring should be one of the supported data formats
describing how the date should appear. The datestring
argument should be enclosed in double-quotes. For exam-
ple, “yy:mm” specifies two-digit years followed by a colon
delimited and then two-digit months.

You may use the special single space datestring “ “ to indi-
cate automatic formatting.

You may also add “\n” to denote a new line providing the
option to make the date string 2 lines. For example,
“Month\nyear” will place the month on the first line and
the year on the second. Note: there is a 2 line maximum. A
second “\n” will therefore create an error.

EViews provides considerable flexibility in formatting your
dates. See “Date Formats” on page 97 of the Command
and Programming Reference for a complete description.

interval(step_size
[,steps][,align_date])

where step_size takes one of the following values: “auto”
(steps and align_date are ignored), “ends” (only label end-
points; steps and align_date are ignored), “all” (label every
point; the steps and align_date options are ignored), “obs”
(steps are one observation), “year” (steps are one year),
“m” (steps are one month), “q” (steps are one quarter).

steps is a number (default=1) indicating the number of
steps between labels.

align_date is a date specified to receive a label.

Note, the align_date should be in the units of the data
being graphed, but may lie outside the current sample or
workfile range.

span(arg) Specify date label spanning: “auto” (automatic determina-
tion), “on” (turn spanning on; label start of period, tick on
obs.), “between” (center label on period), “trimbetween”
(center label on period, trim spaces at axis ends).

Consider the case of a yearly label with monthly ticks. If
span is on, the label is centered on the 12 monthly ticks. If
the span option is off, year labels are put on the first quar-
ter or month of the year.

end / -end [Use / Do not use] end-of-period labeling.

duallevel / -duallevel [Allow / Do not allow] two row date labels on the observa-
tion axis.

dbopen—139

will display dates using four-digit years followed by the default delimiter “:” and a two-digit
month (e.g. – “1974:04”).

graph1.datelabel format(yy[q]mm)

will display a two-digit year followed by a “q” separator and then a two-digit month (e.g. –
“74q04”)

graph1.datelabel interval(y, 2, 1951)

specifies labels every two years on odd numbered years.

graph1.datelabel format(“Month dd\nYYYY”)

specifies time axis label will have 2 lines. The first line will contain the full month name and
day and the second line will contain the 4 digit year.

Cross-references

See Chapter 16. “Graph Objects,” on page 835 of User’s Guide I for a discussion of graph
options.

See also Graph::axis (p. 317), Graph::options (p. 340), and ::setelem (p. 240).

Open an existing database.

Syntax
dbopen(options) [path\]db_name [as shorthand_name]

Follow the dbopen keyword with the name of a database. You should include a path name
to open a database not in the default path. The opened database will become the default
database.

You do not need to specify a database name when opening a Datastream or FRED connec-
tion (“type=datastream” or “type=fred”) as EViews will automatically connect to the
proper location.

You may use the “as” keyword to provide an optional shorthand_name or a short text label
which is used to refer to the open database in commands and programs. If you leave this
field blank, a default shorthand_name will be assigned automatically.

See “Database Shorthands” on page 333 of User’s Guide I for additional discussion.

By default, EViews will use the extension of the database file to determine type. For exam-
ple, files with the extension “.EDB” will be opened as an EViews database, while files with
the extension “.IN7” will be opened as a GiveWin database. You may use the “type=”
option to specify an explicit type.

dbopen Object Container, Data, and File Commands

140—Preliminary Updates to Command Reference

Options

The following table summaries the various database formats, along with the corresponding
“type=” keywords:

type=arg, t=arg Specify the database type: (see table below).

 Option “type=” keywords Notes

Australian Bureau of Statistics
SDMX

“abs” (b)

AREMOS Bank “aremos

AREMOS TSD “a”, “tsd”

Bloomberg “bloom” (a), (b)

Bureau of Economic Analysis “bea” (b)

Bureau of Labor Statistics “bls” (b)

CEIC “ceic” (a), (b)

Datastream “datastream” (a), (b)

DBnomics “dbnomics” (b)

Deutsche Bundesbank SDMX “bbk” (b)

DRIPro Link “dripro” (b)

DRI DDS “dds”

ECB (European Central Bank) ecb” (b)

EIA Bulk File “eiabulk” (a), (c)

EIA (U.S. Energy Information
Administration)

“eia” (a), (b)

Eurostat SDMX “eurostat” (b)

EViews “e”, “eviews”

FAME “f”, “fame” (a)

FRED “fred” (b)

FRED v1 “fredv1” (b)

GiveWin/PcGive “g”, “give”

Haver “h”, “haver” (a)

IHS Global Insight “ihs global insight” (a), (b)

IHS Magellan “magellan” (a), (b)

IHSMarkit API “ihsmarkit” (a), (b)

IMF (International Monetary
Fund) SDMX

“imf” (b)

dbopen—141

• (a) You must have EViews Enterprise Edition to access these databases.

• (b) You must have an active connection to the internet to access these databases.

• (c) You must have internet access to download these file databases prior to opening
them with EViews.

In addition, specific types may require installation of additional software. For details see,
“Notes on Particular Formats” on page 360 in User’s Guide I.

The following options may be required when connecting to a remote server:

Examples

dbopen c:\data\us1

opens a database named US1 in the C:\DATA directory. The command:

dbopen us1

INSEE (National Institute of Statis-
tics and Economic Studies) SDMX

“insee” (b)

Moody’s Economy.com “economy” (a), (b)

NOAA (National Oceanic And
Atmospheric Administration)

“noaa” (b)

OECD (Organization for Economic
Cooperation and Development)
SDMX

“oecd” (b)

RATS 4.x “r”, “rats”

RATS Portable / TROLL “l”, “trl”

SDMX_ML “sdmx” (c)

Trading Economics “tradingeconomics” (b)

TSP Portable “t”, “tsp”

UN (United Nations) “un” (b)

US Census “uscensus” (b)

WHO (World Health Organization) “who” (b)

World Bank “worldbank” (b)

s=server_id,
server=server_id

Server name

u=user,
username=user

Username

p=pwd,
password=pwd

Password

142—Preliminary Updates to Command Reference

opens a database in the default path. If the specified database does not exist, EViews will
issue an error message. You should use db (p. 345) or dbcreate (p. 348) to create a new
database.

Cross-references

See Chapter 10. “EViews Databases,” on page 329 of User’s Guide I for a discussion of
EViews databases.

See also db (p. 345) and dbcreate (p. 348).

Unregister a program file as an EViews Add-in.

Syntax
deleteaddin(options) [path\]prog_name

unregisters the specified program file as an EViews Add-in.

If you do not provide the optional path specification, EViews looks for the program file in
the default EViews Add-ins directory.

Explicit path specifications containing “.\” and “..\” (to indicate the current level and one
directory level up) are evaluated relative EViews default directory.

You may use the special “<addins>” directory keyword in your path specification.

Options

Examples

deleteaddin .\myaddin.prg

unregisters the Add-in associated with file “Myaddin.prg”.

Alternatively,

deleteaddin(proc="myaddin")

unregisters the Add-in whose proc name matches “myaddin”. Note that this name may not
match the program name.

deleteaddin Programming Commands

type=arg Specify the Add-ins type, where arg is the name of a
EViews object type. The default is to create a global Add-
in.

proc=arg User-defined command/procedure name. If omitted, the
Add-in will not have a command form.

did—143

deleteaddin(type="graph", proc="recshade")

unregisters the graph “Recshade” specific Add-in. In cases, where more than 1 Add-in has
the same proc name, the type is useful to differentiate which is to be unregistered.

Cross-references

See Chapter 8. “Add-ins,” on page 191 for a detailed discussion of Add-ins.

Estimate a panel equation using the difference-in-difference estimator. This estimation
method is only available for equations estimated in panel workfiles.

Syntax
equation.did(options) y [x1] [@ treatment]

List the dependent variable, followed by an optional list of exogenous regressors, followed
by an “@” and then the binary treatment variable. You should not include a constant in the
specification.

Options

Examples
equation eq1.did asmrs @ post

estimates an equation by difference-in-difference with ASMRS as the outcome variable, and
POST as the treatment variable.

equation eq2.did lemp lpop @ treated

estimates an equation by difference-in-difference with LEMP as the outcome variable,
TREATED as the treatment variable, and LPOP as an exogenous regressor.

did Equation Methods

coef=arg Specify the name of the coefficient vector. The default
behavior is to use the “C” coefficient vector.

prompt Force the dialog to appear from within a program.

p Print results.

144—Preliminary Updates to Command Reference

Cross-references

Display the Callaway-Sant’Anna decomposition for difference-in-difference estimation.

For panel equations estimated using the difference-in-difference method.

Syntax
eq_name.didcs(options) [additional_regs]

You should follow the didcs keyword by an optional list of additional regressors added to
the Callaway-Sant’Anna estimation.

Options

Example
equation eq1.did lemp @ treated

eq1.didcs lpop

estimates an equation by difference-in-difference with LEMP as the outcome variable, and
TREATED as the treatment variable, and then displays the Callaway-Sant’Anna decomposi-
tion, adding LPOP as an additional exogenous regressor.

Cross-references

Display the Goodman-Bacon decomposition for difference-in-difference estimation.

For panel equations estimated using the difference-in-difference method.

didcs Equation Views

notyet Use observations where an individual is not yet
treated as the comparison group. Default is to only
use individuals that are never treated as the com-
parison.

both Use both observations where an individual is never
treated or has not yet been treated as the compari-
son group. Default is to only use individuals that are
never treated as the comparison.

p Print output.

didgbdecomp Equation Views

didmakeeq—145

Syntax
eq_name.didgbdecomp(options)

Options

Example
equation eq1.did asmrs @ post

eq1.didgbdecomp

estimates an equation by difference-in-difference with ASMRS as the outcome variable, and
POST as the treatment variable, and then displays the Goodman-Bacon decomposition.

Cross-references

Create an equation object with the underlying fixed-effects estimation of a difference-in-dif-
ference equation.

For panel equations estimated using the difference-in-difference method.

Syntax
eq_name.didmakeeq new_eqname

You should follow the didmakeeq keyword with the name of the new estimated equation
with an equivalent specification to be created in the workfile.

Example
equation eq1.did asmrs @ post

eq1.didmakeeq eq_underlying

estimates an equation by difference-in-difference with ASMRS as the outcome variable, and
POST as the treatment variable, and then creates the underlying fixed effects estimation in
the equation object EQ_UNDERLYING

p Print output.

didmakeeq Equation Procs

146—Preliminary Updates to Command Reference

Cross-references

Display difference-in-difference trends summary in graph or tabular form.

Syntax
eq_name.didtrends(options)

For panel equations estimated using the difference-in-difference method.

Options

Example
equation eq1.did asmrs @ post

eq1.didtrends

eq1.didtrends(t)

estimates an equation by difference-in-difference with ASMRS as the outcome variable, and
POST as the treatment variable, and then displays the trend summary graph, then as a table.

Cross-references

Seasonally adjust daily series using the DSA method.

Syntax
series_name.dsa(options) seas_name [@fa factor_name] [@trnd trend_name]

You may follow the dsa keyword with a name to save the seasonally adjusted series. Fur-
ther, you may use the @fa and @trnd keywords to provide names for the saved seasonal fac-
tors and the trend series.

didtrends Equation Views

t Display results in a table.

p Print output.

dsa Series Procs

dsa—147

Options

forcend=arg Specify the end date of the forecast. If not specified, the
last observation in the workfile is used. The forecast begins
at the observation following the current workfile sample
(note, if the workfile sample is equal to the workfile range,
no forecasting is performed).

extendfri For 5-day week data, interpolate to 7-day weeks by repeat-
ing the Friday value for Saturday and Sunday. Default is to
perform 5-day DSA instead of converting to 7-day.

interwkend For 5-day week data, interpolate to 7-day weeks by using
linear interpolation between the Friday value and Monday
values for Saturday and Sunday. Default is to perform 5-
day DSA instead of converting to 7-day.

fixedarima Use a fixed ARIMA model. Default is to use model selection
to determine the ARIMA model.

nodiff Set the level of differencing in the ARIMA model to 0.
Default is 1 if using a fixed ARIMA model, or a choice
between 0 and 1 if using automatic selection.

maxar=integer If using fixed ARIMA model (see the fixedarima option),
specify the AR order. If using automatic selection, specify
the maximum AR order.

maxma=integer If using fixed ARIMA model (see the fixedarima option),
specify the MA order. If using automatic selection, specify
the maximum MA order.

fixedtrig Use a fixed number of trigonometric terms to model the
seasonal patters in the ARIMA model. Default is to use
model selection to determine the number of terms.

maxtrig=integer If using fixed number of trigonometric terms (see the
fixedtrig option), specify the number of terms. If using
automatic selection, specify the maximum number of
terms.

olnoao Do not perform detection of AO outliers. Default is to detect
AO outliers.

olnoio Do not perform detection of IO outliers. Default is to detect
AO outliers.

olls Include detection of LS outliers. Default is to not detect LS
outliers.

oltc Include detection of TC outliers. Default is to not detect TC
outliers.

148—Preliminary Updates to Command Reference

STL options
Day-of-week

Day-of-month

olcvalue=arg Specify the critical value for the outlier detection process.

oldelta=arg Specify the delta value for the TC outlier detection process.

olinits=integer Specify number of inner iterations in the outlier detection
process.

oloutits=integer Specify number of outer iterations in the outlier detection
process.

extenddow When forecasting day-of-week factors, repeat the last week
of actual data throughout the forecast period. Default is to
use exponential smoothing to forecast the factors.

prompt Force the dialog to appear from within a program.

p Print view.

weeksp=integer Specify the seasonal polynomial degree. Default is 0.

weektp=integer Specify the trend polynomial degree. Default is 1.

weekfp=integer Specify the filter polynomial degree. Default is 1.

weeksl=integer Specify the length of the seasonal smoothing window (odd
integers only). Default is 151.

weektl=integer Specify the length of the trend smoothing window (odd
integers only). Default is based upon the seasonal smooth-
ing window length.

weekfl=integer Specify the length of the filter smoothing window (odd
integers only). Default is 1.

weekinits=integer Specify number of inner iterations. Default is 1.

weekoutits=integer Specify the number of outer iterations. Default is 15.

monthsp=integer Specify the seasonal polynomial degree. Default is 0.

monthtp=integer Specify the trend polynomial degree. Default is 1.

monthfp=integer Specify the filter polynomial degree. Default is 1.

monthsl=integer Specify the length of the seasonal smoothing window (odd
integers only). Default is 51.

monthtl=integer Specify the length of the trend smoothing window (odd
integers only). Default is based upon the seasonal smooth-
ing window length.

dsa—149

Day-of-year

Example
elecdmd.dsa(forcend=2015/6/30) elecdmd_adjusted

Performs daily seasonal adjustment on the ELECDMD series, specifying that the forecast end
point should be 30 June 2015, and that the final adjusted series should be named ELECDM-
D_ADJUSTED.

elecdmd.dsa(fixedtrig, nodom, nodoy) elecdmd_adjusted @fa
elecdmd_factors

Performs daily seasonal adjustment on ELECDMD, using a fixed number of trigonometric
terms in the ARIMA step, and without using day-of-month or day-of-year STL. As well as
saving the final adjusted series as ELECDMD_ADJUSTED, the final seasonal factor are also
saved under ELECDMD_FACTORS.

monthfl=integer Specify the length of the filter smoothing window (odd
integers only). Default is 1.

monthinits=integer Specify number of inner iterations. Default is 1.

monthoutits=integer Specify the number of outer iterations. Default is 15.

yearsp=integer Specify the seasonal polynomial degree. Default is 0.

yeartp=integer Specify the trend polynomial degree. Default is 1.

yearfp=integer Specify the filter polynomial degree. Default is 1.

yearsl=integer Specify the length of the seasonal smoothing window (odd
integers only). Default is 13.

yeartl=integer Specify the length of the trend smoothing window (odd
integers only). Default is based upon the seasonal smooth-
ing window length.

yearfl=integer Specify the length of the filter smoothing window (odd
integers only). Default is 1.

yearinits=integer Specify number of inner iterations. Default is 1.

yearoutits=integer Specify the number of outer iterations. Default is 15.

150—Preliminary Updates to Command Reference

Cross-references

Dynamic multipliers for long-run regressors in ARDL equations.

Displays a spool object with the cumulative dynamic multiplier curve for each of the long-
run regressors. The argument is a positive integer denoting the horizon length, and defaults
to 15.

Syntax
eq_name.dynmult(options) [horizon]

horizon is a positive integer denoting the horizon length, and defaults to 15.

Options

Example
ardl_eq.dynmult

generates cumulative dynamic multiplier curves for each long-run regressor. The horizon
length is 15, and the 95% confidence intervals (if they exist), are shaded, and derived from
999 Monte Carlo replications.

ardl_eq.dynmult(noshade) 30

generates cumulative dynamic multiplier curves for each long-run regressor. The horizon
length is 30, and the 95% confidence intervals (if they exist), are not shaded.

ardl_eq.dynmult(noci)

dynmult Equation Views

noci Do not generate confidence intervals for asymmetric
regressors. Note that confidence intervals can only be
generated for asymmetric regressors.

noshade Display confidence interval using lines instead of
shaded bands.

level=number
(default = 0.95)

Number between 0 and 1 representing the confidence
interval level.

reps=integer
(default = 999)

Number of Monte Carlo repetitions used in the genera-
tion of confidence intervals (if applicable).

f=number Fraction of failed repetitions before stopping. Only
applicable if a se_pattern is provided.

prompt Force the dialog to appear from within a program.

p Print output.

ec—151

produces cumulative dynamic multiplier curves for each long-run regressor. The horizon
length is 15, and no confidence intervals are displayed.

ardl_eq.dynmult(level=0.99, reps=499) 10

shows cumulative dynamic multiplier curves for each long-run regressor. The horizon length
is 10, and the 99% confidence intervals (if they exist), are shaded, and derived from 499
Monte Carlo replications.

Cross-references

Estimate a vector error correction model (VEC).

Syntax
var_name.ec(options) lag_pairs endog_list [@ x1 x2 x3 ...] [@exogsr sx1 sx2 sx3 ...]

[@exoglr lx1 lx2 lx3 ...] [@exogboth bx1 bx2 bx3 ...]

Specify the order of the VEC by entering lag_pairs consisting of one or more pairs of lag
intervals, and then list the series or groups to be used as endogenous variables.

Note that the lag orders are for the differences in the error correction representation of the
VEC, not the levels representation of the VAR. If you are comparing results obtained else-
where, you should be certain that the specifications for the lag orders are comparable.

In addition, you may optionally provide:

• an “@”-sign or “@exogsr” followed by a list of exogenous variables in the short-run
equation only

• “@exoglr” followed by a list of exogenous variables in the long-run relation only

• “@exogboth” followed by a list of exogenous variables in both the long-run relation
and the short-run equations

Do not include an intercept or trend in the VEC specification, these deterministic trend terms
should be specified using the “determ=” option, as described below.

Options

Deterministic Trend Option

There are 8 different deterministic trend assumptions that you may specify using the
“determ=arg” option.

These cases correspond to whether the intercept (“c”) and the trend (“t”) are either

• not included (“n”)

ec Var Methods

152—Preliminary Updates to Command Reference

• in the long-run cointegrating relation only (“l”)

• in the short-run equation only (“s”)

• in both the long and short-run equations (“b”)

The values of arg are text shortcuts formed by joining a text shortcut for the intercept speci-
fication with a text shortcut for the trend specification.

The individual intercept and trend specifications are formed by joining the “c” and the “t”
with the appropriate letter describing inclusion in the long and short-run equations.

For example,

• “cb” indicates that the constant is in both the long and short-run equation

• “tl” indicates that the trend is in the long-run cointegrating equation only

so that

• “cbtl” indicates that the constant is in both the long and short-run and the trend is in
the long-run only

Using this convention (along with a special “none” option), we may easily describe options
arguments for all 8 deterministic cases:

cntn, none Case 1: No deterministic terms.

Corresponding VAR model has no deterministic terms.

cltn Case 2: Restricted constant.

Constant only in the cointegrating relations.

Corresponding VAR has a constant.

cbtn (default) Case 3 (JHJ): Unrestricted constant

Constant included both in the short-run equation and (arti-
ficially) in the cointegrating relations via orthogonalization.

Corresponding VAR has a constant and trend.

cstn Case 3: Unrestricted constant

Constant only in the short-run equation.

Corresponding VAR has a trend.

cbtl Case 4 (JHJ): Unrestricted constant and restricted trend

Constant included both in the short-run equation and
(artificially) in the cointegrating relations via
orthogonalization, and trend included only in the cointe-
grating relations.

Corresponding VAR has a constant and trend.

ec—153

Other Options

Examples

var macro1.ec 1 4 m1 gdp tb3

declares a var object MACRO1 and estimates a VEC with four lagged first differences, three
endogenous variables and one cointegrating equation using the default trend option “c”.

var term.ec(determ=cstl, rank=2) 1 2 4 4 tb1 tb3 tb6 @ d2 d3 d4

declares a var object TERM and estimates a VEC with lagged first differences of order 1, 2, 4,
three endogenous variables, three exogenous variables, and two cointegrating equations

cstl Case 4: Unrestricted constant and restricted trend

Constant only in the short-run equation, and trend only in
the cointegrating relation.

Corresponding VAR has a trend.

cbtb Case 5 (JHJ): Unrestricted constant and trend

Constant and trend both included in the short-run equation
and (artificially) in the cointegrating relations via
orthogonalization.

Corresponding VAR has a constant, linear, and quadratic
trend.

csts Case 5: Unrestricted constant and trend

Constant and trend both included in the short-run equa-
tion.

Corresponding VAR has a linear and quadratic trend.

rank = integer
(default = 1)

Number of cointegrating relationships.

restrict Impose restrictions as specified by the Var::append
(p. 995) proc, or the “restspec=” option.

restspec="spec" Define the restricted VEC specification where spec is a
space a space delimited list of VEC coefficient restrictions.

m = integer,
maxit = integer

Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar,
cvg = scalar

Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

prompt Force the dialog to appear from within a program.

p Print the results view.

154—Preliminary Updates to Command Reference

using deterministic trend option “determ=cstl” for a model with a constant in the short-run
equation, and a trend in the long-run cointegrating relation.

var macro1.ec(determ=cstl, rank=2) 1 2 4 4 tb1 tb3 tb6 @exogsr
exog1 @exoglr exog2 @exogdual exog3

The line above declares a VAR object MACRO01 with the same basic specification as TERM,
but with an additional short-run exogenous variable EXOG1, a long-run exogenous variable
EXOG2, and a dual exogenous variable EXOG3.

Cross-references

See “Vector Error Correction (VEC) Models” on page 883 of User’s Guide II for a discussion
of VECs.

See Var::ls (p. 1029) and Var::bvar (p. 1002) for estimation of ordinary VARs and Bayes-
ian VAR models. See also, Var::coint (p. 1006) and Var::append (p. 995).

Display a spool object showing tables with the conditional error correction (CEC) and error
correction (EC) regression results.

Syntax
eq_name.ecresults(options)

Options

Example
ardl_eq.ecresults

displays a spool object with the CEC and EC regressions from the ARDL equation ARDL_EQ.

Cross-references

Perform Error-Trend-Season (ETS) exponential smoothing.

The ets procedure forecasts a series using the ETS model framework with state-space based
likelihood calculations, support for model selection, and calculation of forecast standard
errors.

ecresults Equation Views

p Print output.

ets Series Procs

ets—155

The ETS framework defines an extended class of exponential smoothing models, including
the standard exponential smoothing models (e.g., Holt and Holt-Winters additive and multi-
plicative models).

Syntax
series_name.ets(options) smooth_name

You should enter the ets keyword followed by options and then the a name for the
smoothed output series. You can specify the smoothing method (the default setting is addi-
tive error, no trend, no seasonality) and the smoothing options in the parenthesis.

Options
Forecast sample options

The forecast sample will start at the observation immediately after the estimation sample
(the current workfile sample). The forecast endpoint is given by either:

One of these options is required.

General

Model specification

forclen=int Number of periods to forecast.

forc="date" Specify the date of the forecast end point.

prompt Force the dialog to appear from within a program.

p Print the view.

e=arg
(default = “a”)

Set error type: “a” (additive), “m” (multiplicative), “e”
(auto).

t=arg
(default = “n”)

Set trend type. key can be: “n” (none), “a” (additive),
“m” (multiplicative), “ad” (additive dampened), “md”
(multiplicative dampened), “e” (auto).

 s=arg
(default = “n”)

Set season type. key can be: “n” (none), “a”(additive),
“m” (multiplicative), “e” (auto).

modsel=arg
(default= “aic”)

Model selection method: “aic” (Akaike information cri-
terion), “bic” (Bayesian information criterion/Schwartz
criterion), “hq” (Hannan-Quinn information criterion),
“amse” (average mean squared errors).

alpha=arg Specify fixed value for level parameter .

beta=arg Specify fixed value for trend parameter in models
with trend.

a

b

156—Preliminary Updates to Command Reference

Optimization options

Output options

gamma=arg Specify fixed value for seasonal parameter in models
with a seasonal component.

phi=arg Specify fixed value for dampening parameter in mod-
els with dampened trends.

nomult Do not allow multiplicative trend or seasonal terms.
Only applies if the t=e or s=e options are set.

amse Set Average Mean Square Error (AMSE) as the objective
function (The default is log-likelihood as the objective
function).

namse=integer Specify the AMSE length—the number of observations
over which to calculate AMSE if “amse” is selected.

c=number Set the convergence criteria.

m=integer Set the maximum number of iterations.

ustart Employ user-supplied starting values (taken from the C
vector in the workfile).

noi Do not optimize the initial state values (fix at their start-
ing values).

dgraph=arg Include a decomposition graph for each specified ele-
ment. arg may be composed of any of the following ele-
ments: “f” (forecast), “l” (level), “t” (trend), “s”
(season).

dgopt=arg
(default =“m”)

Format for display of decomposition graph: “m” (multi-
ple graph), “s” (single graph)

graph=arg Include a comparison graph in the output for each spec-
ified element (if model selection is employed). arg may
be composed of any of the following elements: “c” (fore-
cast comparison) and “l” (likelihood comparison).

table=arg Include a comparison table in the output (if model selec-
tion is employed). arg may be composed of any of the
following elements: “c” (forecast comparison) and “l”
(likelihood comparison).

g

f

ets—157

Examples

sales.ets(e=a, t=n, s=a)sales_f

smooths the series SALES using the an ANN (additive error, no trend, no seasonal) model
and creates the smoothed series named “sales_f”.

tb3.ets(e=e, t=e, s=n) tb3_smooth

will smooth TB3, automatically selecting the best smoothing model amongst the different
Error and Trend specifications (the Seasonal specification is set at none).

sales.ets(e=a, t=a, s=a, dgopt=m, dgraph=flts)

will smooth the series SALES using the an AAA (additive error, additive trend, additive sea-
sonal) model and display the output in a spool object which contains the actual and decom-
position series (i.e., forecast, trend, level, and seasonal series) in multiple graphs.

sales.ets(e=a, t=a, s=a, level=level1, trend=trend1,
season=season1, dgopt=s, dgraph=flts)

will smooth the series SALES using the an AAA (additive error, additive trend, additive sea-
sonal) model, create the decomposition series named level, trend, and season series as lev-
el1, trend1, and season1, respectively, and display a spool object which contains the actual
and decomposition graphs in a single graph.

tb3.ets(e=e, t=e, s=e, graph=cl)

will find out the best model amongst the different Error, Trend, and Seasonal specifications
and present the estimation results in a spool object which contains the graphs with forecast
and likelihood comparison graphs between all available models.

tb3.ets(e=a, t=e, s=e, amse, table=cl)

will search for the best model using average mean square errors calculations and display the
estimation results in a spool object with forecast and likelihood comparison tables.

Cross-references

See “Exponential Smoothing” on page 551 of User’s Guide I for a discussion of exponential
smoothing methods.

See also ::smooth (p. 274).

level=name Save the level component as a separate series in the
workfile.

trend=name Save the trend component as a separate series in the
workfile (if applicable).

season=name Save the seasonal component as a separate series in the
workfile (if applicable).

158—Preliminary Updates to Command Reference

Export coef vector to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF,
HTML, Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
coef_name.export(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel 2007 files is:

coef_name.export(options) [path\]file_name [table_description]

where the table_description may contain:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the Excel workbook to refer to a range or cell may be used to specify the cells
to read.

export Coef Procs

export—159

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

h / -h Include(/do not include) column and row headers. The
default is to not include the headers

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

160—Preliminary Updates to Command Reference

LaTeX Options

Excel Options

Examples

The command:

coef1.export myvector

exports data in COEF1 to a CSV file named “myvector.CSV” in the default directory.

coef1.export(h,t=csv, n="NaN") myvector

saves the contents of COEF1 along with the column and row headers to a CSV (comma sep-
arated value) file named “myvector.CSV” and writes all NA values as “NaN”.

coef1.export(h,t=html, s=50) myvector

writes the data of COEF1 along with the column and row headers to a HTML file named
“myvector.HTM” at half of the original size.

coef1.export(n=".", r=B) myvector

exports the data in the second column to a CSV file named “myvector.CSV”, and writes all
NA values as “.”.

coef1.export(t=excelxml, cellfmt=clear, mode=update) myvector
range=Country!b5

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

export—161

writes the data in COEF1 to the preexisting “myvector.XLSX” Excel file to the “Country”
sheet at cell B5, where all cell formatting is cleared.

Cross-references

Export matrix to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF, HTML,
Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
matrix_name.export(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel 2007 files is:

matrix_name.export(options) [path\]file_name [table_description]

where the table_description may contain:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the Excel workbook to refer to a range or cell may be used to specify the cells
to read.

export Matrix Procs

162—Preliminary Updates to Command Reference

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

h / -h Include(/do not include) column and row headers. The
default is to not include the headers

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

export—163

LaTeX Options

Excel Options

Examples

The command:

matrix1.export mymatrix

exports the data in MATRIX1 to a CSV file named “mymatrix.CSV” in the default directory.

matrix1.export(h, t=csv, n="NaN") mymatrix

saves the contents of MATRIX1 along with the column and row headers to a CSV (comma
separated value) file named “mymatrix.CSV” and writes all NA values as “NaN”.

matrix1.export(h, t=html, s=50) mymatrix

exports the data in MATRIX1 along with the column and row headers to a HTML file named
“mymatrix.HTM” at half of the original size.

matrix1.save(n=".", r=B) mymatrix

saves the data in the second column to a CSV file named “mymatrix.CSV”, and writes all NA
values as “.”.

matrix1.export(t=excelxml, cellfmt=clear, mode=update) mymatrix
range=Country!b5

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

164—Preliminary Updates to Command Reference

writes the data in MATRIX1 to the preexisting “mymatrix.XLSX” Excel file to the “Country”
sheet at cell B5, where all cell formatting is cleared.

Cross-references

Export rowvector to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF,
HTML, Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
vector_name.export(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel 2007 files is:

vector_name.export(options) [path\]file_name [table_description]

where the table_description may contain:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the Excel workbook to refer to a range or cell may be used to specify the cells
to read.

export Rowvector Procs

export—165

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

h / -h Include(/do not include) column and row headers. The
default is to not include the headers

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

166—Preliminary Updates to Command Reference

LaTeX Options

Excel Options

Examples

The command:

rvector1.export myvector

exports data in VECTOR1 to a CSV file named “myvector.CSV” in the default directory.

rvector1.export(h,t=csv, n="NaN") myvector

saves the contents of RVECTOR1 along with the column and row headers to a CSV (comma
separated value) file named “myvector.CSV” and writes all NA values as “NaN”.

rvector1.export(h,t=html, s=50) myvector

writes the data of VECTOR1 along with the column and row headers to a HTML file named
“myvector.HTM” at half of the original size.

rvector1.export(n=".", r=B) myvector

exports the data in the second column to a CSV file named “myvector.CSV”, and writes all
NA values as “.”.

rvector1.export(t=excelxml, cellfmt=clear, mode=update) myvector
range=Country!b5

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

export—167

writes the data in VECTOR1 to the preexisting “myvector.XLSX” Excel file to the “Country”
sheet at cell B5, where all cell formatting is cleared.

Cross-references

Export sym to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF, HTML,
Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
sym_name.export(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel 2007 files is:

sym_name.export(options) [path\]file_name [table_description]

where the table_description may contain:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the Excel workbook to refer to a range or cell may be used to specify the cells
to read.

export Sym Procs

168—Preliminary Updates to Command Reference

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

h / -h Include(/do not include) column and row headers. The
default is to not include the headers

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

export—169

LaTeX Options

Excel Options

Examples

The command:

sym1.export mysym

exports the data in SYM1 to a CSV file named “mysym.CSV” in the default directory.

sym1.export(h, t=csv, n="NaN") mysym

saves the contents of SYM1 along with the column and row headers to a CSV (comma sepa-
rated value) file named “mysym.CSV” and writes all NA values as “NaN”.

sym1.export(h, t=html, s=50) mysym

exports the data in SYM1 along with the column and row headers to a HTML file named
“mysym.HTM” at half of the original size.

sym1.save(n=".", r=B) mysym

saves the data in the second column to a CSV file named “mysym.CSV”, and writes all NA
values as “.”.

sym1.export(t=excelxml, cellfmt=clear, mode=update) mysym
range=Country!b5

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

170—Preliminary Updates to Command Reference

writes the data in SYM1 to the preexisting “mysym.XLSX” Excel file to the “Country” sheet
at cell B5, where all cell formatting is cleared.

Cross-references

Export vector to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF, HTML,
Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
vector_name.export(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel 2007 files is:

vector_name.export(options) [path\]file_name [table_description]

where the table_description may contain:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the Excel workbook to refer to a range or cell may be used to specify the cells
to read.

export Vector Procs

export—171

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

h / -h Include(/do not include) column and row headers. The
default is to not include the headers

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

172—Preliminary Updates to Command Reference

LaTeX Options

Excel Options

Examples

The command:

vector1.export myvector

exports data in VECTOR1 to a CSV file named “myvector.CSV” in the default directory.

vector1.export(h,t=csv, n="NaN") myvector

saves the contents of VECTOR1 along with the column and row headers to a CSV (comma
separated value) file named “myvector.CSV” and writes all NA values as “NaN”.

vector1.export(h,t=html, s=50) myvector

writes the data of VECTOR1 along with the column and row headers to a HTML file named
“myvector.HTM” at half of the original size.

vector1.export(n=".", r=B) myvector

exports the data in the second column to a CSV file named “myvector.CSV”, and writes all
NA values as “.”.

vector1.export(t=excelxml, cellfmt=clear, mode=update) myvector
range=Country!b5

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

fill—173

writes the data in VECTOR1 to the preexisting “myvector.XLSX” Excel file to the “Country”
sheet at cell B5, where all cell formatting is cleared.

Cross-references

Fill a svector with the specified values.

Syntax
svector_name.fill(options) s1[s2 s3 …]

Follow the keyword with a list of strings to place in the svector object. Each value should be
surrounded by double quotes if necessary, and values should separated by a space. Running
out of values before the object is completely filled is not an error; the remaining cells or
observations will be unaffected, unless the “l” option is specified to enable looping. If, how-
ever, you list more values than the object can hold, EViews will return an error message.

Options

Examples

sv1.fill a B c

sets the first element of SV1 to “a”, the second to “B” and the third to “c”.

sv1.fill(o=2) a "Hello World" name

sets the second element of SV1 to “a”, the third to “Hello World” and the fourth to “name”.

sv1.fill(o=4, l) first "" Last

sets the fourth element of SV1 to “first”, the fifth to be an empty string, and the sixth value
to “Last”, then repeats the same three values for the remaining rows, so that the seventh ele-
ment is set to “first”, the eight element is empty, the ninth set to “Last” and so on.

sv1.fill(l) ""

clears all of the values in the svector SV1.

Cross-references

See Chapter 11. “Matrix Language,” on page 261 of the Command and Programming Refer-
ence for a detailed discussion of vector and matrix manipulation in EViews.

fill Svector Procs

l Loop repeatedly over the list of values as many times as it
takes to fill the vector.

o=integer
(default=1)

Fill the svector starting from the specified element. Default
is the first element.

174—Preliminary Updates to Command Reference

Compute static forecasts or fitted values from an estimated equation.

When the regressor contains lagged dependent values or ARMA terms, fit uses the actual
values of the dependent variable instead of the lagged fitted values. You may instruct fit to
compare the forecasted data to actual data, and to compute forecast summary statistics.

Not available for equations estimated using ordered methods; use Equation::makemodel
(p. 153) to create a model using the ordered equation results (see example below).

Syntax
eq_name.fit(options) yhat [y_se]

eq_name.fit(options) yhat [y_se y_var]

Following the fit keyword, you should type a name for the forecast series and, optionally, a
name for the series containing the standard errors. For ARCH specifications, you may use
the second form of the command, and optionally include a name for the conditional vari-
ance series.

Forecast standard errors are currently not available for binary, censored, and count models.

Options

Basic Options

fit Equation Procs

d In models with implicit dependent variables, forecast the
entire expression rather than the normalized variable.

u Substitute expressions for all auto-updating series in the
equation.

g Graph the fitted values together with the ±2 standard error
bands.

ga Graph the forecasts along with the actuals (if available).

e Produce the forecast evaluation table.

i Compute the fitted values of the index. Only for binary,
censored and count models.

s Ignore ARMA terms and use only the structural part of the
equation to compute the fitted values.

n Ignore coef uncertainty in standard error calculations that
use them.

fit—175

Stochastic Options

Options for forecasting from a functional coefficients estimated equation.

Examples
equation eq1.ls cons c cons(-1) inc inc(-1)

eq1.fit c_hat c_se

genr c_up=c_hat+2*c_se

genr c_low=c_hat-2*c_se

line cons c_up c_low

The first line estimates a linear regression of CONS on a constant, CONS lagged once, INC,
and INC lagged once. The second line stores the static forecasts and their standard errors as
C_HAT and C_SE. The third and fourth lines compute the +/–2 standard error bounds. The
fifth line plots the actual series together with the error bounds.

equation eq2.binary(d=l) y c wage edu

eq2.fit yf

eq2.fit(i) xbeta

genr yhat = 1-@clogit(-xbeta)

forcsmpl =
smpl

Fit sample (optional). If forecast sample is not provided,
the workfile sample will be employed.

f = arg
(default=
“actual”)

Out-of-fit-sample fill behavior: “actual” (fill observations
outside the fit sample with actual values for the fitted vari-
able), “na” (fill observations outside the fit sample with
missing values).

prompt Force the dialog to appear from within a program.

p Print view.

stochastic = arg
(default =
“none”)

Stochastic method: “none” (none), “mca” (Monte Carlo –
asymptotic), “mcbs” (Monte Carlo – bootstrap), “bs”
(bootstrap).

reps = integer
(default = 999)

Number of stochastic replications

lhr = arg
(default = 0.1)

Lower historical range (number between 0 and upper his-
torical range).

uhr = arg
(default = 0.9)

Upper historical range (number between lower historical
range and 1).

bsdep Bootstrap only the dependent variable (not the functional
coefficient variable).

176—Preliminary Updates to Command Reference

The first line estimates a logit specification for Y with a conditional mean that depends on a
constant, WAGE, and EDU. The second line computes the fitted probabilities, and the third
line computes the fitted values of the index. The fourth line computes the probabilities from
the fitted index using the cumulative distribution function of the logistic distribution. Note
that YF and YHAT should be identical.

Note that you cannot fit values from an ordered model. You must instead solve the values
from a model. The following lines generate fitted probabilities from an ordered model:

equation eq3.ordered y c x z

eq3.makemodel(oprob1)

solve oprob1

The first line estimates an ordered probit of Y on a constant, X, and Z. The second line
makes a model from the estimated equation with a name OPROB1. The third line solves the
model and computes the fitted probabilities that each observation falls in each category.

Cross-references

To perform dynamic forecasting, use ::forecast (p. 180). See Equation::makemodel
(p. 153) and Model::solve (p. 553) for forecasting from systems of equations or ordered
equations.

See Chapter 25. “Forecasting from an Equation,” on page 167 of the User’s Guide II for a dis-
cussion of forecasting in EViews and Chapter 31. “Discrete and Limited Dependent Variable
Models,” on page 363 of the User’s Guide II for forecasting from binary, censored, truncated,
and count models.

Computes (n-period ahead) static forecasts of the VAR or VEC equation.

fit computes the static forecast of variables and all observations in a specified sample. In
some settings, you may instruct forecast to compare the forecasted data to actual data,
and to compute summary statistics.

Syntax
var_name.fit(options) f_pattern [se_pattern]

You should enter a naming suffix for the forecast series and, optionally, a naming suffix for
the series containing the standard errors. Standard errors are currently only available for
non-Bayesian VARs, and are computed via simulation.

Not currently available for switching VARs

fit Var Procs

fit—177

Options
General Options

Non-Bayesian Options

BVAR Options

If “classical” is not specified, the following Bayesian forecasting options are available:

g Graph the forecasts in individual graphs - one per depen-
dent variable.

m Graph the forecasts in a combined graph.

e Produce the forecast evaluation table.

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

prompt Force the dialog to appear from within a program.

p Print view.

streps=integer Number of simulation repetitions. Only applicable if a
se_pattern is provided.

f=number Fraction of failed repetitions before stopping. Only applica-
ble if a se_pattern is provided.

classical Perform classical forecasting – forecast based upon the pos-
terior means of the coefficients as if they were calculated
from a classical VAR. If omitted Bayesian sampling is used.

mean Store the mean of the draws from the sampler. If omitted
the median is stored.

draws=integer
(default=
100000)

Number of draws.

burn=arg
(default=0.1)

Proportion of initial draws to discard.

seed=integer Random number seed.

dropunstable Drop any draws that produce unstable coefficients.

dgraph Produce distribution graphs.

fangraph Produce fan graphs.

page=arg Store the individual draws in a new page.

178—Preliminary Updates to Command Reference

BTVCVAR Options

Examples

The following lines:

smpl 1970q1 1990q4

var var1.ls 1 3 con inc

smpl 1991q1 1995q4

var1.fit(m) _f _se

estimate a VAR over the period 1970Q1–1990Q4, and then computes static forecasts for the
period 1991Q1–1995Q4, and plots the forecasts as line graphs.

Cross-references

See “Forecasting” on page 868 of User’s Guide II for a discussion of forecasting from VARs
variance decompositions

See also ::forecast (p. 180).

usemean Use posterior mean as the point estimate. The posterior
median is used if usemean is not included in the options
list.

showci Show credibility intervals (bands).

cilevels = arg

(default =
"0.95")

Set credibility levels. For multiple levels, enter a space-
delimited list of values surrounded by quotation marks,
e.g., "0.3 0.5 0.8".

uselines Use lines instead of shading for credibility intervals.

seed = int Set the random seed. EViews will generate a seed if one is
not specified.

rng = arg

(default = “kn”
or method set
via rndseed)

Set random number generator type. Available types are:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”), L’Ecuyer’s (1999) combined
multiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

fixrow—179

Fixes a set of columns to left of the spreadsheet view of a table object so that the leading
columns are always in view.

Syntax
table_name.fixcol cols

where cols is the number of columns to be fixed

Example

tab1.fixcol 3

fixes the first 3 columns of the table TAB1 such that they are always in view despite the hor-
izontal scroll position.

tab1.fixcol 0

removes any fixed columns in table TAB1.

Cross-references

Fixes a set of rows at the top of the spreadsheet view of a table object so that the leading
rows are always in view.

Syntax
table_name.fixrow rows

where rows is the number of rw to be fixed

Example

tab1.fixrow 2

fixes the first 2 rows of the table TAB1 such that they are always in view despite the vertical
scroll position.

tab1.fixrow 0

removes any fixed rows in table TAB1.

fixcol Table Procs

fixrow Table Procs

180—Preliminary Updates to Command Reference

Cross-references

Fixes a set of rows at the top and a set of columns to left of a spreadsheet view of a table
object so that the leading rows and columns are always in view.

Syntax
table_name.fixrowcol rows cols

where rows is the number of rows to be fixed and cols is the number of columns to be fixed.

Example

tab1.fixrowcol 1 4

fixes the first row and the first 4 columns of the table TAB1 such that they are always in view
despite the horizontal and vertical scroll position of the table.

tab1.fixrowcol 0 0

removes all fixed rows and columns in table TAB1.

tab1.fixrowcol 0 4

in table TAB1 removes all fixed rows but fixes the first 4 columns.

Cross-references

Computes (n-period ahead) dynamic forecasts of an estimated equation.

forecast computes the forecast for all observations in a specified sample. In some settings,
you may instruct forecast to compare the forecasted data to actual data, and to compute
summary statistics.

Syntax
eq_name.forecast(options) yhat [y_se]

eq_name.forecast(options) yhat [y_se y_var]

Enter a name for the forecast series and, optionally, a name for the series containing the
standard errors. For ARCH specifications, you may use the second form of the command,
and optionally enter a name for the conditional variance series. Forecast standard errors are
currently not available for binary or censored models. forecast is not available for models
estimated using ordered methods.

fixrowcol Table Procs

forecast Equation Procs

forecast—181

Options

Examples

The following lines:

smpl 1970q1 1990q4

d In models with implicit dependent variables, forecast the
entire expression rather than the normalized variable.

u Substitute expressions for all auto-updating series in the
equation.

g Graph the forecasts together with the ±2 standard error
bands.

ga Graph the forecasts along with the actuals (if available).

e Produce the forecast evaluation table.

i Compute the forecasts of the index. Only for binary, cen-
sored and count models.

s Ignore ARMA terms and use only the structural part of the
equation to compute the forecasts.

n Ignore coef uncertainty in standard error calculations that
use them.

b =arg MA backcast method: “fa” (forecast available). Only for
equations estimated with MA terms. This option is ignored
if you specify the “s” (structural forecast) option.

The default method uses the estimation sample.

forcsmpl=smpl Forecast sample (optional). If forecast sample is not pro-
vided, the workfile sample will be employed

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

stochastic Perform stochastic simulation for dynamic equations esti-
mated using least squares.

streps=integer
(default=1000)

Number of stochastic repetitions (for threshold regression
or stochastic simulation).

stfrac=number
(default=.02)

Fraction of failed repetitions before stopping (for threshold
regression or stochastic simulation).

prompt Force the dialog to appear from within a program.

p Print view.

182—Preliminary Updates to Command Reference

equation eq1.ls con c con(-1) inc

smpl 1991q1 1995q4

eq1.fit con_s

eq1.forecast con_d

plot con_s con_d

estimate a linear regression over the period 1970Q1–1990Q4, compute static (fitted) and
dynamic forecasts for the period 1991Q1–1995Q4, and plot the two forecasts in a single
graph.

equation eq1.ls m1 gdp ar(1) ma(1)

eq1.forecast m1_bj bj_se

eq1.forecast(s) m1_s s_se

plot bj_se s_se

estimates an ARMA(1,1) model, computes the forecasts and standard errors with and with-
out the ARMA terms, and plots the two forecast standard errors.

Cross-references

To perform static forecasting with equation objects see ::fit (p. 174). For multiple equa-
tion forecasting, see Equation::makemodel (p. 153), and Model::solve (p. 553).

For more information on equation forecasting in EViews, see Chapter 25. “Forecasting from
an Equation,” on page 167 of the User’s Guide II.

Average different forecasts of a series.

Syntax
series.forcavg(options) forecast_data

You should specify the forecast data to be averaged by entering a list of objects as forecast_-
data. The list may be a list of series objects, a group object, a series naming pattern (such as
“f*” to indicate all series starting with the letter “F”), or a list of equation objects.

If a list of equations is entered, EViews will automatically forecast from those equation
objects over the forecast sample (the current workfile sample).

forcavg Series Procs

forcavg—183

Options

Example

The commands

wfopen elecdmd.wf1

elecdmd.forcavg(trainsmpl="2012M1 2012M12", wgt=mse) elecf_fe*

open the workfile elecdmd.wf1 and then perform forecast averaging using the actual series
ELECDMD, and the forecast series specified by the naming pattern ELECF_FE*.

The averaging method MSE is used. A training sample of 2012M1 to 2012M12 is used to cal-
culate the weights in the MSE and MSE Ranks methods.

See “Forecast Averaging” on page 545 of User’s Guide I for additional discussion.

See also Series::forceval (p. 683).

wgt=”key” Set the type of averaging to use. key can be “mean”
(default), “trmean” (trimmed-mean), “med” (median),
“ols” (least squares weights), “mse” (mean square error
weights), “ranks”, (MSE ranks), “aic” (Smoothed AIC
weights), or “sic” (BMA weights). “aic” and “sic” are only
available if a list of equations is provided as the forecast_-
data.

trim=num Set the level of trimming for the Trimmed mean method.
Num should be a number between 1 and 100. Only applica-
ble if the “trmean” option is used.

msepwr=int Set the power to which the MSE values are raised in the
MSE ranks method. Only applicable if the “mseranks”
option is used.

s Use a static (rather than dynamic) forecast when comput-
ing the forecasts over the training sample. Only applicable
if forecast_data is a list of equation objects.

forcsmpl=arg Forecast sample (optional). If forecast sample is not pro-
vided, the workfile sample will be employed.

trainsmpl=arg Specify the sample used for calculating the averaging
weights. Only applicable if the “ols”, “mse”, “mseranks”,
“aic” or “sic” options are used.

name=arg Set the name of the final averaged series.

wgtname=arg Save the weights into a vector in the workfile with the
name wgtname.

184—Preliminary Updates to Command Reference

Computes (n-period ahead) dynamic forecasts of the VAR or VEC equation.

forecast computes the forecast for all variables and all observations in a specified sample.
In some settings, you may instruct forecast to compare the forecasted data to actual data,
and to compute summary statistics.

Syntax
var_name.forecast(options) f_pattern [se_pattern]

You should enter a naming suffix for the forecast series and, optionally, a naming suffix for
the series containing the standard errors. Forecast standard errors are currently only avail-
able for non-Bayesian VARs, and are computed via simulation.

Not currently available for switching VARs

Options
General Options

Non-Bayesian Options

forecast Var Procs

g Graph the forecasts in individual graphs - one per depen-
dent variable.

m Graph the forecasts in a combined graph.

e Produce the forecast evaluation table.

f = arg
(default=
“actual”)

Out-of-forecast-sample fill behavior: “actual” (fill observa-
tions outside the forecast sample with actual values for the
fitted variable), “na” (fill observations outside the forecast
sample with missing values).

prompt Force the dialog to appear from within a program.

p Print view.

streps=integer Number of simulation repetitions. Only applicable if a
se_pattern is provided.

f=number Fraction of failed repetitions before stopping. Only applica-
ble if a se_pattern is provided.

forecast—185

BVAR Options

If “classical” is not specified, the following Bayesian forecasting options are available:

BTVCVAR Options

classical Perform classical forecasting – forecast based upon the pos-
terior means of the coefficients as if they were calculated
from a classical VAR. If omitted Bayesian sampling is used.

mean Store the mean of the draws from the sampler. If omitted
the median is stored.

draws=integer
(default=
100000)

Number of draws.

burn=arg
(default=0.1)

Proportion of initial draws to discard.

seed=integer Random number seed.

dropunstable Drop any draws that produce unstable coefficients.

dgraph Produce distribution graphs.

fangraph Produce fan graphs.

page=arg Store the individual draws in a new page.

usemean Use posterior mean as the point estimate. The posterior
median is used if usemean is not included in the options
list.

showci Show credibility intervals (bands).

cilevels = arg

(default =
"0.95")

Set credibility levels. For multiple levels, enter a space-
delimited list of values surrounded by quotation marks,
e.g., "0.3 0.5 0.8".

uselines Use lines instead of shading for credibility intervals.

seed = int Set the random seed. EViews will generate a seed if one is
not specified.

rng = arg

(default = “kn”
or method set
via rndseed)

Set random number generator type. Available types are:
improved Knuth generator (“kn”), improved Mersenne
Twister (“mt”), Knuth’s (1997) lagged Fibonacci generator
used in EViews 4 (“kn4”), L’Ecuyer’s (1999) combined
multiple recursive generator (“le”), Matsumoto and
Nishimura’s (1998) Mersenne Twister used in EViews 4
(“mt4”).

186—Preliminary Updates to Command Reference

Examples

The following lines:

smpl 1970q1 1990q4

var var1.ls 1 3 con inc

smpl 1991q1 1995q4

var1.forecast(m) _f _se

estimate a VAR over the period 1970Q1–1990Q4, and then computes dynamic forecasts for
the period 1991Q1–1995Q4, and plots the forecasts as line graphs.

smpl 1970q1 1990q4

var var2.bvar(prior=inw) 1 3 con inc

smpl 1991q1 1995q4

var1.forecast(m, draws=50000, burn=.05, dgraph, page=draws) _f

estimates a Bayesian VAR with an independent normal-Wishart prior over the same period,
and then forecasts that VAR taking 50,000 draws of a Gibbs sampler, discarding the first
2,500 draws, producing a distribution graph of the forecasts and storing the draws into a
new panel page called DRAWS.

Cross-references

See “Forecasting” on page 868 of User’s Guide II for a discussion of forecasting from VARs
and VECS.

See also ::fit (p. 174).

Imports data from a foreign file into the coef object.

Syntax
coef_name.import([type=]) source_description import_specification

• source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 539)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

import Coef Procs

import—187

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:

coef_name.import(type=excel[xml]) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

188—Preliminary Updates to Command Reference

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

coef_obj.import "c:\data files\data.xls"

loads the active sheet of “data.XLSX” into the VEC_NAME vector object.

coef_obj.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “data.XLS” into the COEF_OBJ object.

HTML Files

The syntax for reading HTML pages is:

coef_name.import(type=html) source_description [table_description] [variables_de-
scription]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

import—189

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

coef_obj.import "c:\data.html"

loads into the COEF_OBJ the data located in the HTML file “Data.HTML” located on the C:\
drive

coef_obj.import(type=html)
"http://www.tradingroom.com.au/apps/mkt/forex.ac" colhead=3

loads into a coef object called COEF_OBJ the data with the given URL located on the website
site “http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:

coef_name.import(type=arg) source_description [table_description]
[variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

190—Preliminary Updates to Command Reference

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra

import—191

zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column. When importing a CSV file, lines which have the delimiter
as the last character (for example: “name, description, date”), EViews normally deter-
mines the line to have 3 columns. With the above option, EViews will determine the
line to have 4 columns. Note this is not the same as a line containing “name, descrip-
tion, date”. In this case, EViews will always determine the line to have 3 columns
regardless if the option is set.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

192—Preliminary Updates to Command Reference

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

coef_obj.import c:\data.csv skip=5

reads “Data.CSV” into a coef_obj, skipping the first 5 rows.

coef_obj.import(type=text) c:\date.txt delim=comma

loads the comma delimited data “Date.TXT” into the COEF_OBJ matrix object.

Imports data from a foreign file into the matrix object.

Syntax
matrix_name.import([type=]) source_description import_specification

• source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 539)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

import Matrix Procs

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

import—193

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:

matrix_name.import(type=excel[xml]) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

matrix_name.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the MATRIX_NAME matrix object.

matrix_name.import "c:\data files\data.xls" range="GDP data"

194—Preliminary Updates to Command Reference

reads the data contained in the “GDP data” sheet of “Data.XLS” into the MATRIX_NAME
object.

HTML Files

The syntax for reading HTML pages is:

matrix_name.import(type=html) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

mat1.import "c:\data.html"

loads into the MAT1 matrix object the data located in the HTML file “Data.HTML” located
on the C:\ drive

import—195

mat1.import(type=html)
"http://www.tradingroom.com.au/apps/mkt/forex.ac" colhead=3

loads into a matrix object MAT1 the data with the given URL located on the website site
“http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:

matrix_name.import(type=arg) source_description [table_description]
[variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

196—Preliminary Updates to Command Reference

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column. When importing a CSV file, lines which have the delimiter

import—197

as the last character (for example: “name, description, date”), EViews normally deter-
mines the line to have 3 columns. With the above option, EViews will determine the
line to have 4 columns. Note this is not the same as a line containing “name, descrip-
tion, date”. In this case, EViews will always determine the line to have 3 columns
regardless if the option is set.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

198—Preliminary Updates to Command Reference

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

mat2.import c:\data.csv skip=5

reads “Data.CSV” into a MAT2, skipping the first 5 rows.

mat2.import(type=text) c:\date.txt delim=comma

loads the comma delimited data “Date.TXT” into the MAT2 matrix object.

Imports data from a foreign file into the rowvector object.

Syntax
rowvector_name.import([type=]) source_description import_specification

• source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 539)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

import Rowvector Procs

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

import—199

Excel Files

The syntax for reading Excel files is:

rowvector_name.import(type=excel[xml]) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

rowvec_obj.import "c:\data files\data.xls"

loads the active sheet of “Data.XLSX” into the ROWVEC_OBJ matrix object.

rowvec_obj.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the ROWVEC_OBJ
object.

200—Preliminary Updates to Command Reference

HTML Files

The syntax for reading HTML pages is:

rowvector_name.import(type=html) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

rvec.import "c:\data.html"

loads into the RVEC object the data located in the HTML file “Data.HTML” located on the
C:\ drive

rvec.import(type=html)
"http://www.tradingroom.com.au/apps/mkt/forex.ac" colhead=3

loads into a rowvector RVEC the data with the given URL located on the website site
“http://www.tradingroom.com.au”. The column header is set to three rows.

import—201

Text and Binary Files

The syntax for reading text or binary files is:

rowvector_name.import(type=arg) source_description [table_description]
[variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

202—Preliminary Updates to Command Reference

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column.

When importing a CSV file, lines which have the delimiter as the last character (for
example: ‘name,description,date,’), EViews normally determines the line to have 3
columns. With the above option, EViews will determine the line to have 4 columns.
Note this is not the same as a line containing ‘name,description,date’. In this case,
EViews will always determine the line to have 3 columns regardless if the option is
set.

import—203

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

rvec2.import c:\data.csv skip=5

reads “Data.CSV” into a RVEC2, skipping the first 5 rows.

204—Preliminary Updates to Command Reference

rvec2.import(type=text) c:\date.txt delim=comma

loads the comma delimited data “Date.TXT” into the RVEC2 matrix object.

Imports data from a foreign file into the sym object.

Syntax
sym_name.import([type=]) source_description import_specification

• source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 539)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:

sym_name.import(type=excel[xml]) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

import Sym Procs

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

import—205

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

Excel Examples

sym_obj.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the SYM_NAME sym object.

sym_obj.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the SYM_OBJ object.

206—Preliminary Updates to Command Reference

HTML Files

The syntax for reading HTML pages is:

sym_name.import(type=html) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

sym01.import 01"c:\data.html"

import—207

loads into the SYM01 matrix object the data located in the HTML file “Data.HTML” located
on the C:\ drive

Text and Binary Files

The syntax for reading text or binary files is:

sym_name.import(type=arg) source_description [table_description]
[variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

208—Preliminary Updates to Command Reference

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column.

When importing a CSV file, lines which have the delimiter as the last character (for
example: ‘name,description,date,’), EViews normally determines the line to have 3
columns. With the above option, EViews will determine the line to have 4 columns.

import—209

Note this is not the same as a line containing ‘name,description,date’. In this case,
EViews will always determine the line to have 3 columns regardless if the option is
set.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w” (EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same

210—Preliminary Updates to Command Reference

rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

sym2.import c:\data.csv skip=5

reads “Data.CSV” into SYM2, skipping the first 5 rows.

sym01.import(type=text) c:\date.txt delim=comma

loads the comma delimited data “Date.TXT” into the SYM01 matrix object.

Imports data from a foreign file into the vector object.

Syntax
vector_name.import([type=]) source_description import_specification

• source_description should contain a description of the file from which the data is to be
imported. The specification of the description is usually just the path and file name of
the file, however you can also specify more precise information. See wfopen (p. 539)
of the Command and Programming Reference for more details on the specification of
source_description.

• The optional “type=” option may be used to specify a source type. For the most part,
you should not need to specify a “type=” option as EViews will automatically deter-
mine the type from the filename. The following table summaries the various source
formats and along with the corresponding “type=” keywords:

import Vector Procs

 Option Keywords

Excel (through 2003) “excel”

Excel 2007 (xml) “excelxml”

HTML “html”

Text / ASCII “text”

import—211

• import_specification can be used to provide additional information about the file to be
read. The details of import_specification will depend upon the type of file being
imported.

Excel Files

The syntax for reading Excel files is:

vector_name.import(type=excel[xml]) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading Excel data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w” (EViews automatic detection). This option is rarely required.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the data (default is 1). This
option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the data (default is last observation
of the file). This option may be used to read only part of the file, which may be useful
for testing.

212—Preliminary Updates to Command Reference

Excel Examples

vec_obj.import "c:\data files\data.xls"

loads the active sheet of DATA.XLSX into the VEC_NAME vector object.

vec_obj.import "c:\data files\data.xls" range="GDP data"

reads the data contained in the “GDP data” sheet of “Data.XLS” into the VEC_OBJ object.

HTML Files

The syntax for reading HTML pages is:

vector_name.import(type=html) source_description [table_description]
[variables_description]

The following table_description elements may be used when reading an HTML file or page:

• “table = arg”, where arg specifies which HTML table to read in an HTML file/page
containing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

vec1.import "c:\data.html"

import—213

loads into the VEC1 matrix object the data located in the HTML file “Data.HTML” located on
the C:\ drive

vec1.import(type=html)
"http://www.tradingroom.com.au/apps/mkt/forex.ac" colhead=3

loads into a vector object called VEC1 the data with the given URL located on the website
site “http://www.tradingroom.com.au”. The column header is set to three rows.

Text and Binary Files

The syntax for reading text or binary files is:

vector_name.import(type=arg) source_description [table_description]
[variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

214—Preliminary Updates to Command Reference

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column.

import—215

When importing a CSV file, lines which have the delimiter as the last character (for
example: ‘name,description,date,’), EViews normally determines the line to have 3
columns. With the above option, EViews will determine the line to have 4 columns.
Note this is not the same as a line containing ‘name,description,date’. In this case,
EViews will always determine the line to have 3 columns regardless if the option is
set.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w” (EViews automatic detection). This option is rarely used.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file).

216—Preliminary Updates to Command Reference

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

vec2.import c:\data.csv skip=5

reads “Data.CSV” into a VEC2, skipping the first 5 rows.

vec01.import(type=text) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into the VEC01 matrix object.

Display impulse response functions of var object with an estimated VAR or VEC.

Syntax
var_name.impulse(n, options) ser1 [ser2 ser3 ...] [@ shock_series [@ ordering_series]]

You must specify the number of periods over which to compute the impulse response
functions.

List the series names in the var whose responses you would like to compute. You may
optionally specify the sources of shocks. To specify the shocks, list the series after an “@”.
By default, EViews computes the responses to all possible sources of shocks using the order-
ing in the Var.

If you are using impulses from the Cholesky factor, you may change the Cholesky ordering
by listing the order of the series after a second “@”.

Options
General Options

impulse Var Views

g Display combined graphs, with impulse responses of one
variable to all shocks shown in one graph.

m (default) Display multiple graphs, with impulse response to each
shock shown in separate graphs.

t Tabulate the impulse responses.

a Accumulate the impulse responses.

n

impulse—217

imp=arg
(default=“chol”)

Type of factorization for the decomposition: unit impulses,
ignoring correlations among the residuals (“imp=unit”),
non-orthogonal, ignoring correlations among the residuals
(“imp=nonort”), Cholesky with d.f. correction
(“imp=chol”), Cholesky without d.f. correction
(“imp=mlechol”), Generalized (“imp=gen”), structural
(“imp=struct”), or user specified (“imp=user”).

The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 1045).
For user-specified impulses, you must specify the name of
the vector/matrix containing the impulses using the
“fname=” option.

The option “imp=mlechol” is provided for backward com-
patibility with EViews 3.x and earlier.

fname=name Specify name of vector/matrix containing the impulses.
The vector/matrix must have rows and 1 or columns,
where is the number of endogenous variables.

se=arg Standard error calculations: “se=a” (analytic),
“se=mcarlo” (Monte Carlo), “se=boot” (bootstrap).

If selecting Monte Carlo or bootstrap, you must specify the
number of replications with the “rep=” option.

Note the following:

(1) Analytic standard errors are currently not available for
(a) VECs and (b) structural decompositions identified by
long-run restrictions. The “se=a” option will be ignored
for these cases.

(2) Monte Carlo standard errors are currently not available
for (a) VECs and (b) structural decompositions. The
“se=mcarlo” option will be ignored for these cases.

(3) VECs only compute bootstrap standard errors so this
option will be ignored.

rep=integer Number of Monte Carlo or bootstrap replications to be
used in computing the standard errors. Must be used with
the “se=mcarlo” and “se=boot” options.

bs=arg (default
= “hp”)

Bootstrap method: “sp” (standard percentile), “hp” (Hall’s
percentile), “hs” (Hall’s studentized), “ku” (Killian’s unbi-
ased).

dbsrep (default =
499)

Number of double bootstrap replications. Must be used
with the “bs=hs” and “bs=ku” options unless the “fdb”
option is specified, in which case this option will be
ignored.

k k
k

218—Preliminary Updates to Command Reference

fdb Approximate the double bootstrap computation using fast
double bootstrap routines.

cilevels=arg
(default =
“0.95”)

Confidence interval coverage: space limited list of numbers
between 0 and 1.

uselines Use lines instead of shading for confidence intervals.

matbys=name Save responses ordered by shocks (impulses) in a named
matrix. The first column is the response of the first variable
to the first shock, the second column is the response of the
second variable to the first shock, and so on. The response
and shock orderings correspond to the ordering of variables
in the VAR.

matbyr=name Save responses ordered by response series in a named
matrix. The first column is the response of the first variable
to the first shock, the second column is the response of the
first variable to the second shock, and so on. The response
and shock orderings correspond to the ordering of variables
in the VAR.

smat=name Save responses ordered by shocks (impulses) in a named
matrix (akin to the “matbys=” option). The shocks and
responses are ordered according to the user-specified order
given by the “@ shock_series” and “@ ordering_series”
specifications.

rmat=name Save responses ordered by response series in a named
matrix (akin to the “matbyr=” option). The shocks and
responses are ordered according to the user-specified order
given by the “@ shock_series” and “@ ordering_series”
specifications.

cimat=name Save matrix consisting of confidence intervals (lower-upper
pairs for each impulse-response combination).

rcimat=name Save matrix consisting of impulse responses and associated
confidence intervals (lower-upper pairs for each impulse-
response combination).

prompt Force the dialog to appear from within a program.

p Print the results.

impulse—219

BVAR Options

If you are using Bayesian sampling, the following Bayesian options are available:

BTVCVAR Options

Examples
var var1.ls 1 4 m1 gdp cpi

var1.impulse(10,m) gdp @ m1 gdp cpi

The first line declares and estimates a VAR with three variables. The second line displays
multiple graphs of the impulse responses of GDP to shocks to the three series in the VAR
using the ordering as specified in VAR1.

var1.impulse(10,m) gdp @ m1 @ cpi gdp m1

displays the impulse response of GDP to a one standard deviation shock in M1 using a dif-
ferent ordering.

bvartype = arg
(default=
“bayes”)

Impulse method: Bayesian sampling (“bayes”), classical
impulse response analysis using the posterior residual
covariance matrix (“classpost”), classical impulse response
analysis using the empirical residual covariance matrix
(“classemp”).

draws=integer
(default=
100000)

Number of draws.

burn=arg
(default=0.1)

Proportion of initial draws to discard.

seed=integer Random number seed.

dropunstable Drop any draws that produce unstable coefficients.

dgraph Produce distribution graphs.

page=arg Store the individual draws in a new page.

starts = arg Set impulse dates. For multiple dates, enter a space-delim-
ited list of values surrounded by quotation marks, e.g.,
"1980q1 2000q1 2020q1".

usemean Use posterior mean as the point estimate. The posterior
median is used if usemean is not included in the options
list.

showci Show credibility intervals (bands).

220—Preliminary Updates to Command Reference

Cross-references

See Chapter 44. “Vector Autoregression and Error Correction Models,” on page 835 of User’s
Guide II for a discussion of impulse responses in VARs.

See also ::vdecomp (p. 276).

Estimation by linear or nonlinear least squares regression.

When the current workfile has a panel structure, ls also estimates cross-section weighed
least squares, feasible GLS, and fixed and random effects models.

Syntax
eq_name.ls(options) y x1 [x2 x3 ...]

eq_name.ls(options) specification

For linear specifications, list the dependent variable first, followed by a list of the indepen-
dent variables. Use a “C” if you wish to include a constant or intercept term; unlike some
programs, EViews does not automatically include a constant in the regression. You may add
AR, MA, SAR, and SMA error specifications, a D fractional differencing term, and PDL spec-
ifications for polynomial distributed lags. If you include lagged variables, EViews will adjust
the sample automatically, if necessary.

Both dependent and independent variables may be created from existing series using stan-
dard EViews functions and transformations. EViews treats the equation as linear in each of
the variables and assigns coefficients C(1), C(2), and so forth to each variable in the list.

Linear or nonlinear single equations may also be specified by explicit equation. You should
specify the equation as a formula. The parameters to be estimated should be included
explicitly: “C(1)”, “C(2)”, and so forth (assuming that you wish to use the default coefficient
vector “C”). You may also declare an alternative coefficient vector using coef and use these
coefficients in your expressions.

ls Equation Methods

ls—221

Options
Non-Panel LS Options

indicator Include indicator saturation detection as part of estimation
routine.

w=arg Weight series or expression.

Note: we recommend that, absent a good reason, you
employ the default settings Inverse std. dev. weights
(“wtype=istdev”) with EViews default scaling
(“wscale=eviews”) for backward compatibility with ver-
sions prior to EViews 7.

wtype=arg
(default=“istdev”)

Weight specification type: inverse standard deviation (“ist-
dev”), inverse variance (“ivar”), standard deviation
(“stdev”), variance (“var”).

wscale=arg Weight scaling: EViews default (“eviews”), average
(“avg”), none (“none”).

The default setting depends upon the weight type:
“eviews” if “wtype=istdev”, “avg” for all others.

z Turn off backcasting in ARMA models where “arma=cls”.

optmethod = arg Optimization method for nonlinear least squares and
ARMA: “bfgs” (BFGS); “newton” (Newton-Raphson),
“opg” or “bhhh” (OPG or BHHH), “kohn” (Kohn-Ansley
for ARMA estimated by ML or GLS), or “legacy” (EViews
legacy for nonlinear least squares and ARMA estimated by
CLS).

Gauss-Newton is the default method.

optstep = arg Step method for nonlinear least squares and ARMA: “mar-
quardt” (Marquardt); “dogleg” (Dogleg); “linesearch” (Line
search).

Marquardt is the default method.

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method available for non-
linear least squares or ARMA estimated by CLS), “hac”
(Newey-West HAC, available for nonlinear least squares or
ARMA estimated by CLS)..

covinfo = arg Information matrix method: “opg” (OPG); “hessian”
(observed Hessian).

(Applicable when non-legacy “optmethod=”.)

222—Preliminary Updates to Command Reference

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

covlag=arg
(default=1)

Whitening lag specification: integer (user-specified lag
value), “a” (automatic selection).

covinfosel=arg
(default=“aic”)

Information criterion for automatic selection: “aic”
(Akaike), “sic” (Schwarz), “hqc” (Hannan-Quinn) (if
“lag=a”).

covmaxlag=integer Maximum lag-length for automatic selection (optional) (if
“lag=a”). The default is an observation-based maximum
of .

covkern=arg
(default=“bart”)

Kernel shape: “none” (no kernel), “bart” (Bartlett, default),
“bohman” (Bohman), “daniell” (Daniel), “parzen”
(Parzen), “parzriesz” (Parzen-Riesz), “parzgeo” (Parzen-
Geometric), “parzcauchy” (Parzen-Cauchy), “quadspec”
(Quadratic Spectral), “trunc” (Truncated), “thamm”
(Tukey-Hamming), “thann” (Tukey-Hanning), “tparz”
(Tukey-Parzen).

covbw=arg
(default=“fixednw”
)

Kernel Bandwidth: “fixednw” (Newey-West fixed),
“andrews” (Andrews automatic), “neweywest” (Newey-
West automatic), number (User-specified bandwidth).

covnwlag=integer Newey-West lag-selection parameter for use in nonpara-
metric kernel bandwidth selection (if “covbw=newey-
west”).

covbwint Use integer portion of bandwidth.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

arma=arg ARMA estimation method: “ml” (maximum likelihood);
“gls” (generalized least squares), “cls” (conditional least
squares).

Not applicable to ARFIMA models which always estimate
using maximum likelihood.

armastart=arg ARMA coefficient starting values: “auto” (automatic)
“fixed” (legacy EViews fixed); “random” (random draw);
“user” (user-specified).

Applicable when “arma=ml” or “arma=gls”.

T1 3

ls—223

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR or MA terms when “arma=cls” (see also param
(p. 455) of the Command and Programming Reference).

s=number Determine starting values for equations specified by list
with AR or MA terms when “arma=cls”. Specify a number
between zero and one representing the fraction of prelimi-
nary least squares estimates computed without AR or MA
terms to be used. Note that out of range values are set to
“s=1”. Specifying “s=0” initializes coefficients to zero. By
default EViews uses “s=1”.

Does not apply to coefficients for AR and MA terms which
are set to EViews determined default values.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

Available only for legacy estimation (“optmeth=legacy”).

cov=arg Covariance method: “ordinary” (default method based on
inverse of the estimated information matrix), “huber” or
“white” (Huber-White sandwich method available for non-
linear least squares or ARMA estimated by CLS), “hac”
(Newey-West HAC, available for nonlinear least squares or
ARMA estimated by CLS)., “hc” (extended heteroskedastic-
ity consistent), “hcuser” (user-specified heteroskedastic-
ity), “cr” (cluster robust).

The extended “hc” methods are only available for linear
specifications.

hctype=arg (default
“hc2”)

Extended heteroskedasticity consistent method: “hc0” (no
d.f. adjustment), “hc1” (d.f. adjusted), “hc2”, “hc3”,
“hc4”, “hc4m”, “hc5”, when “cov=hc”.

userwt=arg Name of series containing user-diagonal weights (if
“cov=hcuser”)

crtype=arg (default
“cr1”)

Cluster robust weighting method: “cr0” (no finite sample
correction), “cr1” (finite sample correction), “hc2”, “hc3”,
“hc4”, “hc4m”, “hc5”, when “cov=cr”.

crname=arg Cluster robust series name, when “cov=cr”.

k=arg
(default = 0.7)

Parameter for “cov=hc, hctype=hc5” or “cov=cr,
crtype=cr5”.

k1=arg
(default = 1.0)

Parameter for “cov=hc, hctype=hc4m” or “cov=cr,
crtype=cr4m”.

224—Preliminary Updates to Command Reference

Note: not all options are available for all equation methods. See the User’s Guide II for details
on each estimation method.

Non-Panel Indicator Saturation Options

For use if “indicator” option is specified.

k2=arg
(default = 1.5)

Parameter for “cov=hc, hctype=hc4m” or “cov=cr,
crtype=cr4m”.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

prompt Force the dialog to appear from within a program.

p Print estimation results.

noiis Do not search for impulse terms.

sis Search for step-shift terms.

trend Search for trend terms.

pval=number
(default = 0.05)

Set the terminal condition p-value used to determine the
stopping point of each search path

nolm Do not perform AR LM diagnostic test.

arpval=number
(default = 0.025)

Set p-value used in AR LM diagnostic test.

arlags=int (default
= 1)

Set number of lags used in AR LM diagnostic test.

noarch Do not perform ARCH LM diagnostic test.

archpval=number
(default = 0.025)

Set p-value used in ARCH LM diagnostic test.

archlags=int
(default = 1)

Set number of lags used in ARCH LM diagnostic test.

nojb Do not perform Jarque-Bera normality diagnostic test.

jbpval=number
(default = 0.025)

Set p-value used in Jarque-Bera normality diagnostic test.

nopet Do not perform Parsimonious Encompassing diagnostic
test.

petpval=number
(default = 0.025)

Set p-value used in Parsimonious Encompassing diagnostic
test.

ls—225

Panel LS Options

nogum Do not include the general model as a candidate for model
selection.

noempty Do not include the empty model as a candidate for model
selection.

ic =arg Set the information criterion used in model selection: “AIC”
(Akaike information criteria, default), “BIC” (Schwarz
information criteria), “HQ” (Hannan-Quin criteria).

blocks=int Override the EViews’ determination of the number of
blocks in which to split the estimation sample.

cx=arg Cross-section effects: (default) none, fixed effects
(“cx=f”), random effects (“cx=r”).

per=arg Period effects: (default) none, fixed effects (“per=f”), ran-
dom effects (“per=r”).

wgt=arg GLS weighting: (default) none, cross-section system
weights (“wgt=cxsur”), period system weights
(“wgt=persur”), cross-section diagonal weighs
(“wgt=cxdiag”), period diagonal weights (“wgt=per-
diag”).

cov=arg Coefficient covariance method: (default) ordinary, White
cross-section system (period clustering) robust
(“cov=cxwhite” or “cov=percluster”), White period sys-
tem (cross-section clustering) robust (“cov=perwhite” or
“cov=cxcluster”), White heteroskedasticity robust
(“cov=stackedwhite”), White two-way cluster robust
(cov=bothcluster”), Cross-section system robust/PCSE
(“cov=cxsur”), Period system robust/PCSE (“cov=per-
sur”), Cross-section heteroskedasticity robust/PCSE
(“cov=cxdiag”), Period heteroskedasticity robust/PCSE
(“cov=perdiag”).

keepwgts Keep full set of GLS weights used in estimation with object,
if applicable (by default, only small memory weights are
saved).

rancalc=arg
(default=“sa”)

Random component method: Swamy-Arora (“ran-
calc=sa”), Wansbeek-Kapteyn (“rancalc=wk”), Wallace-
Hussain (“rancalc=wh”).

nodf Do not perform degree of freedom corrections in computing
coefficient covariance matrix. The default is to use degree
of freedom corrections.

226—Preliminary Updates to Command Reference

coef=arg Specify the name of the coefficient vector (if specified by
list); the default behavior is to use the “C” coefficient vec-
tor.

iter=arg (default=
“onec”)

Iteration control for GLS specifications: perform one weight
iteration, then iterate coefficients to convergence
(“iter=onec”), iterate weights and coefficients simultane-
ously to convergence (“iter=sim”), iterate weights and
coefficients sequentially to convergence (“iter=seq”), per-
form one weight iteration, then one coefficient step
(“iter=oneb”).

Note that random effects models currently do not permit
weight iteration to convergence.

unbalsur Compute SUR factorization in unbalanced data using the
subset of available observations for a cluster.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients. The criterion will be set to the nearest value
between 1e-24 and 0.2.

s Use the current coefficient values in estimator coefficient
vector as starting values for equations specified by list with
AR terms (see also param (p. 455) of the Command and
Programming Reference).

s=number Determine starting values for equations specified by list
with AR terms. Specify a number between zero and one
representing the fraction of preliminary least squares esti-
mates computed without AR terms to be used. Note that
out of range values are set to “s=1”. Specifying “s=0” ini-
tializes coefficients to zero. By default EViews uses “s=1”.

Does not apply to coefficients for AR terms which are
instead set to EViews determined default values.

numericderiv /
-numericderiv

[Do / do not] use numeric derivatives only. If omitted,
EViews will follow the global default.

fastderiv / -fastderiv [Do / do not] use fast derivative computation. If omitted,
EViews will follow the global default.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

prompt Force the dialog to appear from within a program.

p Print basic estimation results.

ls—227

Examples

equation eq1.ls m1 c uemp inf(0 to -4) @trend(1960:1)

estimates a linear regression of M1 on a constant, UEMP, INF (from current up to four lags),
and a linear trend.

equation eq2.ls(z) d(tbill) c inf @seas(1) @seas(1)*inf ma(2)

regresses the first difference of TBILL on a constant, INF, a seasonal dummy, and an interac-
tion of the dummy and INF, with an MA(2) error. The “z” option turns off backcasting.

coef(2) beta

param beta(1) .2 beta(2) .5 c(1) 0.1

equation eq3.ls(cov=white) q = beta(1)+beta(2)*(l^c(1) + k^(1-
c(1)))

estimates the nonlinear regression starting from the specified initial values. The
“cov=white” option reports heteroskedasticity consistent standard errors.

equation eq4.ls r = c(1)+c(2)*r(-1)+div(-1)^c(3)

sym betacov = eq4.@cov

declares and estimates a nonlinear equation and stores the coefficient covariance matrix in a
symmetric matrix called BETACOV.

equation eq5.ls(cx=f, per=f) n w k ys c

estimates the equation EQ5 in the panel workfile using both cross-section and period fixed
effects.

equation eq6.ls(cx=f, wgt=cxdiag) n w k ys c

estimates the equation EQ6 in a panel workfile with cross-section weights and fixed effects.

Cross-references

Chapter 19. “Basic Regression Analysis,” on page 5 and Chapter 20. “Additional Regression
Tools,” on page 23 of the User’s Guide II discuss the various regression methods in greater
depth.

Chapter 16. “Special Expression Reference,” on page 601 of the Command and Programming
Reference describes special terms that may be used in ls specifications.

See Chapter 17. “Panel Estimation,” on page 645 of the User’s Guide II for a discussion of
panel equation estimation.

228—Preliminary Updates to Command Reference

Load one or more new pages in the default workfile.

Syntax
pageload [path\]workfile_name [page1] [page2] [...]

pageload(options) source_description [@keep keep_list] [@drop drop_list] [@keep-
map keepmap_list] [@dropmap dropmap_list] [@selectif condition]

pageload(options)source_description table_description [@keep keep_list] [@drop
drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@selectif con-
dition]

The basic syntax for pageload follows that of wfopen (p. 278). The difference between the
two commands is that pageload creates a new page in the default workfile, rather than open-
ing or creating a new workfile. If a page is loaded with a name that matches an existing
page, EViews will rename the new page to the next available name (e.g., “INDIVID” will be
renamed “INDIVID1”.

If a workfile is provided as the source file, EViews will, by default, open all pages in the
source workfile. Specific pages may be loaded by providing their names.

Examples

pageload "c:\my documents\data\panel1"

loads the workfile PANEL1.WF1 from the specified directory. All of the pages in the workfile
will be loaded as new pages into the current workfile.

pageload f.wf1 mypage

loads the page “mypage” in the workfile F.WF1 located in the default directory.

See the extensive set of examples in wfopen (p. 278).

Cross-references

See “Creating a Page by Loading a Workfile or Data Source” on page 90 of User’s Guide I for
discussion.

See also wfopen (p. 278) and pagecreate (p. 450).

pageload Object Container, Data, and File Commands

pagesave—229

Save the active page in the default workfile as an EViews workfile (.WF1 file) or as a for-
eign data source.

Syntax
pagesave(options) [path\]filename

pagesave(options) source_description [@keep keep_list] [@drop drop_list] [@keep-
map keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

pagesave(options) source_description table_description [@keep keep_list] [@drop
drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl
smpl_spec]

The command saves the active page in the specified directory using filename. By default, the
page is saved as an EViews workfile, but options may be used to save all or part of the page
in a foreign file or data source.

When saving to a foreign data file, the basic specification consists of a “type=” option and
source_description and table_description arguments which specify the format of the foreign
data file. See below for details on source_description and table_description.

The remaining optional elements specify the actual elements to be saved.

Options

pagesave Object Container, Data, and File Commands

type=arg, t=arg Optional type specification: (see table below).

Note that ODBC support is provided only in the EViews
Enterprise Edition.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If a “mode=” option is not provided, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

Note that the “mode=update” option is only available for:
1) Excel versions through 2003, if Excel is installed, and 2)
Excel 2007 (xml).

maptype=arg Write selected maps as: numeric (“n”), character (“c”),
both numeric and character (“b”).

230—Preliminary Updates to Command Reference

The following table summaries the various foreign formats, along with the corresponding
“type=” keywords:

nomapval Do not write mapped values for series with attached value
labels (the default is to write mapped values)

noid Do not write observation identifiers to foreign data files (by
default, EViews will include a column with the date or
observation identifier).

nonames Do not export variable names.

attr Include object attributes (if the output type supports it).
When specified, the first column will contain attribute
names and each attribute value will be displayed after the
name row.

 Type Keywords Supports Attributes

Access “access”

Aremos-TSD “a”, “aremos”, “tsd”

Binary “binary”

dBASE “dbase”

Excel (through 2003) “excel” Yes

Excel 2007 (xml) “excelxml” Yes

EViews Workfile ---

Gauss Dataset “gauss”

GiveWin/PcGive “g”, “give”

HTML “html”

JSON** json

Lotus 1-2-3 “lotus”

ODBC Dsn File “dsn”

ODBC Data Source “odbc”

MicroTSP Workfile “dos”, “microtsp”

MicroTSP Mac Workfile “mac”

RATS 4.x “r”, “rats”

RATS Portable / TROLL “l”, “trl”

SAS Program “sasprog”

SAS Transport “sasxport”

SPSS “spss”

SPSS Portable “spssport”

pagesave—231

Note that if you wish to save your Excel 2007 XML file with macros enabled, you should
specify the explicit filename extension “.XLSM”.

Foreign Data Descriptions

When saving to a foreign data format the base specification consists of a basic specification
of source_description and table_description which specify the exact details of the format.

The command for saving as foreign data formats is

pagesave(options) source_description [table_description] [@keep keep_list] [@drop
drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl
smpl_spec]

where the syntax of the table_description and variables_description differs slightly depend-
ing on the type of file.

• Note that the JSON type will ignore any @keep, @drop, and @smpl arguments.

Excel Files

The base syntax for writing Excel files is:

pagesave(options) source_description [table_description]

where source_description is the path and name of the Excel file to be saved, and where the
following table_description elements may be employed:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

Stata (Version 7 Format) “stata”

Tableau Data Extract “tde”

Text / ASCII “text” Yes

TSP Portable “t”, “tsp”

232—Preliminary Updates to Command Reference

HTML Files

The base syntax for saving HTML files is:

pagesave(options) source_description [table_description]

where source_description is the path and name of the file to be saved, and where the follow-
ing table_description element may be employed:

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

Text and Binary and Other Files

The base syntax for saving other files is:

pagesave(options) source_description

where source_description is the path and name of the file to be saved.

Examples
EViews Workfile Examples

pagesave new_wf

saves the current EViews workfile page as “New_wf.WF1” in the default directory.

pagesave "c:\documents and settings\my data\consump"

saves the current workfile page as “Consump.WF1” in the specified path.

pagesave macro @keep gdp unemp

saves the two series GDP and UNEMP in a separate workfile, “macro.WF1” in the default
directory.

pagesave macro @dropmap gdp*

saves all of the series in the current workfile, other than those that match the name pattern
“gdp*” in a workfile, “macro.WF1” in the default directory.

The command:

pagesave "<mydropboxdrive>"\folder\nipa.wf1"

will save the file to the cloud location MYDROPBOXDRIVE.

Foreign Data Examples

pagesave(type=excelxml, mode=update) macro.xlsx

saves the current workfile page as a modern Excel “.XLSX” file.

pagesave(type=excelxml, mode=update) macro.xlsx range="Sheet2!a1"
byrow @keep gdp unemp

resize—233

will save the two series GDP and UNEMP into the existing Excel file “macro.XLSX”, specify-
ing that the series should be written by row, starting in cell A1 on sheet Sheet2.

To save the latter file in a macro-enabled Excel 2007 file, you should specify the explicit file-
name extension “.XLSM”:

pagesave(type=excelxml, mode=update) macro.xlsm range="Sheet2!a1"
byrow @keep gdp unemp

Alternately,

pagesave(type=excelxml, noid) macro.xlsx range="Sheet2!a1"

will save the current workfile page as the Excel file “macro.XLSX” but will not include a col-
umn of dates.

If you wish to save a column of dates in a specific date format, you can do so by first creat-
ing an alpha series in the workfile with the specified format, then saving the file with the
“noid” option including that alpha series:

alpha mydates = @datestr(@date, "YYYY-MM-DD")

pagesave(type=excelxml, noid) macro.xlsm range="Sheet2!a1" @keep
mydates gdp unemp

Will save the series GDP and UNEMP into the Excel file “macro.XLSM” along with a date
series with the format “YYYY-MM-DD”.

Cross-references

See “Saving a Workfile” on page 77 in the User’s Guide I.

See also wfopen (p. 278) and wfsave (p. 293).

Resize the matrix object.

Syntax
matrix_name.resize rows cols

Examples

mat1.resize 3 5

resizes the matrix MAT1 to 3 rows and 5 columns, retaining the contents of any existing ele-
ments and initializing new elements to 0.

resize Matrix Procs

234—Preliminary Updates to Command Reference

Cross-references

Resize the svector object.

Syntax
svector_name.resize rows

Examples

svec1.resize 20

resizes the svector SVEC1 to 20 rows, retaining the contents of any existing elements and
initializing new elements to the empty string “”.

Cross-references

Resize the sym object.

Syntax
sym_name.resize rows/cols

Examples

sym1.resize 20

resizes the sym SYM1 to 20 rows/columns, retaining the contents of any existing elements
and initializing new elements to 0.

Cross-references

Resize the vector object.

Syntax
vector_name.resize rows

resize Svector Procs

resize Sym Procs

resize Vector Procs

save—235

Examples

vec1.resize 20

resizes the vector VEC1 to 20 rows, retaining the contents of any existing elements and ini-
tializing new elements to 0.

Cross-references

Save table to disk as an Excel 2007 XLSX, CSV, tab-delimited ASCII text, RTF, HTML,
Enhanced Metafile, LaTeX, PDF, or Markdown file.

Syntax
table_name.save(options) [path\]file_name

Follow the keyword with a name for the file. file_name may include the file type extension,
or the file type may be specified using the “t=” option.

If an explicit path is not specified, the file will be stored in the default directory, as set in the
File Locations global options.

The base syntax for writing Excel files is:

table_name.save(options) [path\]file_name [table_description]

where the following table_description elements may be employed:

• “range = arg”, where arg is top left cell of the destination Excel workbook, following
the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the worksheet
name is omitted, the cell range is assumed to refer to the currently active sheet. If only a top
left cell is provided, a bottom right cell will be chosen automatically to cover the range of
non-empty cells adjacent to the specified top left cell. If only a sheet name is provided, the
first set of non-empty cells in the top left corner of the chosen worksheet will be selected
automatically. As an alternative to specifying an explicit range, a name which has been
defined inside the excel workbook to refer to a range or cell may be used to specify the cells
to read.

save Table Procs

236—Preliminary Updates to Command Reference

Options

PDF Options

t=file_type
(default=“csv”)

Specifies the file type, where file_type may be one of:
“excelxml” (Excel 2007 (xml)),“csv” (CSV - comma-sepa-
rated), “rtf” (Rich-text format), “txt” (tab-delimited text),
“html” (HTML - Hypertext Markup Language), “emf”
(Enhanced Metafile), “pdf” (PDF - Portable Document For-
mat), “tex” (LaTeX), or “md” (Markdown).

Files will be saved with the “.xlsx”, “.csv”, “.rtf”, “.txt”,
“.htm”, “.emf”, “.pdf”, “.tex”, or “.md” extensions, respec-
tively.

s=arg Scale size, where arg is from 5 to 200, representing the per-
centage of the original table size (only valid for HTML or
RTF files).

r=cell_range Range of table cells to be saved. See Table::setfill-
color (p. 943) for the cell_range syntax. If a range is not
provided, the entire table will be saved.

n=string Replace all cells that contain NA values with the specified
string. “NA” is the default.

f / -f [Use full precision values/ Do not use full precision] when
saving values to the table (only applicable to numeric
cells). By default, the values will be saved as they appear
in the currently formatted table.

prompt Force the dialog to appear from within a program.

landscape Save in landscape mode (the default is to save in portrait
mode).

size=arg
(default=“letter”)

Page size: “letter”, “legal”, “a4”, and “custom”.

width=number
(default=8.5)

Page width in inches if “size=custom”.

height=number
(default=11)

Page height in inches if “size=custom”.

leftmargin=number
(default=0.5)

Left margin width in inches.

rightmargin=number
(default = 0.5)

Right margin width in inches.

save—237

LaTeX Options

Excel Options

Examples

The command:

tab1.save mytable

saves TAB1 to a CSV file named “mytable.CSV” in the default directory.

tab1.save(t=csv, n="NaN") mytable

saves TAB1 to a CSV (comma separated value) file named “mytable.csv” and writes all NA
values as “NaN”.

tab1.save(r=B2:C10, t=html, s=50) mytable

saves from data from the second row, second column, to the tenth row, third column of
TAB1 to a HTML file named “mytable.HTM” at half of the original size.

tab1.save(f, n=".", r=B) mytable

topmargin=number
(default=1)

Top margin width in inches.

bottommargin=
number (default = 1)

Bottom margin width in inches.

texspec / -texspec [Include / Do not include] the full LaTeX documentation
specification in the LaTeX output. The default behavior is
taken from the global default settings.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If the “mode=” option is not used, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

cellfmt=arg Specify whether to use EViews, pre-existing, or remove cell
formatting (colors, font, number formatting when possible,
column widths and row heights) for the written range.

arg may be “eviews” (replace current formatting in the file
with the same cell formatting in EViews), “preserve” (leave
current cell formatting already in the Excel file), or “clear”
(remove current formatting and do not replace).

238—Preliminary Updates to Command Reference

saves the contents of the second column of the table in full precision to a CSV file named
“mytable.CSV”, and writes all NA values as “.”.

tab1.save(t=excelxml, cellfmt=eviews, mode=update) mytable
range=Country!b5

adds TAB1 to the preexisting “mytable.XLSX” Excel file to the “Country” sheet at cell B5,
where the cell colors and fonts in TAB1 will also be copied.

Cross-references

For additional discussion of table commands see Chapter 3. “Working with Tables and
Spreadsheets,” on page 57 of the Command and Programming Reference.

See Chapter 17. “Table and Text Objects,” beginning on page 873 of User’s Guide I for a dis-
cussion of tables.

Set the column labels in a matrix object.

Syntax
matrix_name.setcollabels label1 label2 label3....

Follow the setcollabels command with a space delimited list of column labels. Note that
each column label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are columns, EViews will keep the corresponding default column
names (“C11”, “C12”, etc...).

Examples

mat1.setcollabels USA UK FRANCE

sets the column label for the first column in matrix MAT1 to USA, the second to UK, and the
third to FRANCE.

Cross-references

Set the column labels in a rowvector object.

Syntax
rowvector_name.setcollabels label1 label2 label3....

setcollabels Matrix Procs

setcollabels Rowvector Procs

setcollabels—239

Follow the setcollabels command with a space delimited list of column labels. Note that
each column label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are columns, EViews will keep the corresponding default column
names (“C11”, “C12”, etc...).

Examples

rvec1.setcollabels USA UK FRANCE

sets the column label for the first column in rowvector MAT1 to USA, the second to UK, and
the third to FRANCE.

Cross-references

Set the column label in a svector object.

Syntax
svector_name.setcollabels label1

Follow the setcollabels command with the column label. Note that the column label
should not contain spaces unless it is enclosed in quotes.

Examples

svec1.setcollabels MyResults

sets the column label to “MyResults”.

Cross-references

Set the column labels in a sym object.

Syntax
sym_name.setcollabels label1 label2 label3....

Follow the setcollabels command with a space delimited list of column labels. Note that
each column label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are columns, EViews will keep the corresponding default column
names (“C11”, “C12”, etc...).

Examples

sym1.setcollabels USA UK FRANCE

setcollabels Svector Procs

setcollabels Sym Procs

240—Preliminary Updates to Command Reference

sets the column label for the first column in symmetric matrix SYM1 to USA, the second to
UK, and the third to FRANCE.

Cross-references

Set the column label in a vector object.

Syntax
vector_name.setcollabels label1

Follow the setcollabels command with the column label. Note that the column label
should not contain spaces unless it is enclosed in quotes.

Examples

vec1.setcollabels MyResults

sets the column label to “MyResults”.

Cross-references

Set individual line, bar and legend options for each series in the graph.

Syntax
graph_name.setelem(graph_elem) argument_list

where graph_elem is the identifier for the graph element whose options you wish to modify:

The argument list for setelem may contain one or more of the following:

setcollabels Vector Procs

setelem Graph Procs

integer Index for graph element (for non-boxplot graphs). For
example, if you provide the integer “2”, EViews will modify
the second line in the graph.

box_elem Boxplot element to be modified: box (“b”), median
(“med”), mean (“mean”), near outliers (“near” or “no”),
far outliers (“far” or “fo”), whiskers (“w”), staples (“s”).
For boxplot graphs only.

setelem—241

symbol(arg)

Sets the drawing symbol: arg can be an integer from 1–18,
or one of the matching keywords. “obslabel” and “dotob-
slabel”, and “dotobslabelcircle” use the observation label
as the symbol.

Selecting a symbol automatically turns on symbol use.

The “none” option turns off symbol use.

symbolsize(arg),
symsize(arg)

Sets the symbol size. arg may be an integer between 1-8,
where 1 is the smallest symbol and 8 is the largest, or

one of the keywords: “XS” (X-Small), “S” (Small), “M”
(Medium), “L” (Large), “XL” (X-Large), “2XL” (2X-Large),
“3XL” (3X-Large), “4XL” (4X-Large).

242—Preliminary Updates to Command Reference

linecolor(arg),
lcolor(arg)

Sets the line and symbol color. arg may be one of the pre-
defined color keywords, or it may be specified using indi-
vidual red-green-blue (RGB) components using the
“@RGB” or “@HEX” functions. The arguments to the
@RGB function are a set of three integers from 0 to 255,
representing the RGB values of the color. The arguments to
the “@HEX” function are a set of six characters represent-
ing the RGB values of the color in hexadecimal. Each two
character set represents a red, green or blue component in
the range '00' to 'FF'. For a description of the available
color keywords see “Color definitions” on page 244.

linewidth(n1),
lwidth(n1)

Sets the line and symbol width: n1 should be a number
between “.25” and “5”, indicating the width in points.

linepattern(arg),
lpat(arg)

Sets the line pattern to the
type specified by arg. arg
can be an integer from 1–
12 or one of the matching
keywords.

Note that the option inter-
acts with the graph options
for “color”, “lineauto”,
“linesolid”, “linepat” (see
Graph::options
(p. 340), for details). You
may need to set the graph
option for “linepat” to
enable the display of line
patterns. See
Graph::options
(p. 340).
Note also that the patterns with index values 7–11 have
been modified since version 5.0. In particular, the “none”
option has been moved to position 12.

The “none” option turns off lines and uses only symbols.

lineopacity(arg), Sets the line opacity to the value specified by arg. arg can
be an value from 0 to 1.

Setting the level to 0.0 will make the object completely
transparent (0% opacity) while a value of 1.0 will make the
object completely opaque (100% opacity).

setelem—243

fillcolor(arg),
fcolor(arg)

Sets the fill color for symbols, bars, and pies. arg may be
one of the predefined color keywords, or it may be speci-
fied using individual red-green-blue (RGB) components
using the “@RGB” function or “@HEX” functions. The
arguments to the @RGB function are a set of three integers
from 0 to 255, representing the RGB values of the color.
The arguments to the “@HEX” function are a set of six
characters representing the RGB values of the color in
hexadecimal. Each two character set represents a red,
green or blue component in the range '00' to 'FF'. For a
description of the available color keywords see “Color defi-
nitions” on page 244.

fillgray(n1),
gray(n1)

Sets the gray scale for bars and
pies: n1 should be an integer from
1–15 corresponding to one of the
predefined gray scale settings
(from lightest to darkest).

fillhatch(arg),
hatch(arg)

Sets the hatch characteris-
tics for bars and pies: arg
can be an integer from 1–
7, or one of the matching
keywords.

fillopacity(arg), Sets the fill opacity to the value specified by arg. arg can be
an value from 0 to 1.

Setting the level to 0.0 will make the object completely
transparent (0% opacity) while a value of 1.0 will make the
object completely opaque (100% opacity).

244—Preliminary Updates to Command Reference

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

preset(n1) Sets line and fill characteristics to the specified EViews pre-
set values, where n1 is an integer from 1–30. Simultane-
ously sets “linecolor”, “linepattern”, “linewidth”,
“symbol”, “fillcolor”, “fillgray”, and “fillhatch” to the
EViews predefined definitions for graph element n1.

When applied to boxplots, the line color of the specified
element will be applied to the box, whiskers, and staples.

default(n1) Sets line and fill characteristics to the specified user-
defined default settings where n1 is an integer from 1–30.
Simultaneously sets “linecolor”, “linepattern”, “linewidth”,
“symbol”, “fillcolor”, “fillgray”, and “fillhatch” to the val-
ues in the user-defined global defaults for graph element
n1.

When applied to boxplots, the line color of the specified
settings will be applied to the box, whiskers, and staples.

axis(arg),

scale(arg)

Assigns the element to an axis: left (“l”), right (“r”), bot-
tom (“b”), top (“t”). The latter two options are only appli-
cable for XY and scatter graphs (scat (p. 1127), xyarea
(p. 1143), xybar (p. 1146), xyline (p. 1150), xypair
(p. 1154)).

legend(str) Assigns legend text for the element. str will be used in the
legend to label the element.

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

ltred @rgb(255, 168, 168) @hex(ffa8a8)

green @rgb(0, 128, 0) @hex(008000)

black @rgb(0, 0, 0) @hex(000000)

white @rgb(255, 255, 255) @hex(ffffff)

purple @rgb(128, 0, 128) @hex(800080)

orange @rgb(255, 128, 0) @hex(ff8000)

yellow @rgb(255, 255, 0) @hex(ffff00)

setfillcolor—245

Examples

graph1.setelem(2) lcolor(blue) lwidth(2) symbol(circle)

sets the second line of GRAPH1 to be a blue line of width 2 with circle symbols.

graph1.setelem(1) lcolor(blue)

graph1.setelem(1) linecolor(0, 0, 255)

are equivalent methods of setting the linecolor to blue.

graph1.setelem(1) fillgray(6)

sets the gray-scale color for the first graph element.

The lines:

graph1.setelem(1) scale(l)

graph1.setelem(2) scale(l)

graph1.setelem(3) scale(r)

create a dual scale graph where the first two series are scaled together and labeled on the
left axis, and the third series is scaled and labeled on the right axis.

graph1.setelem(2) legend("gross domestic product")

sets the legend for the second graph element.

Cross-references

See Chapter 16. “Graph Objects,” on page 835 of User’s Guide I for a discussion of graph
options in EViews.

See also Graph::axis (p. 317), ::datelabel (p. 137) and Graph::options (p. 340).

Define the fill (background) color used in geomap shapes using values in a series.

Syntax
geomap_name.setfillcolor(t=type) fillcolor_args

where:

gray @rgb(128, 128, 128) @hex(808080)

ltgray @rgb(192, 192, 192) @hex(c0c0c0)

setfillcolor Geomap Procs

246—Preliminary Updates to Command Reference

General Arguments

To specify the series or expression whose values will determine the background color:

• mapser(spec)

where spec is a series name or expression.

To specify the minimum and maximum values where the coloring begins and ends:

• min(color_arg)

• max(color_arg)

To set the missing value (NA) background color:

• naclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

Type-specific Arguments

There are optional type-specific arguments that correspond to each of the type choices:

Single color

To set the single background color:

clr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

Positive-negative single threshold

You may set the color for both the non-negative (posclr) and the negative (negclr) values

posclr(color_arg)

negclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the non-
negative color defaults to “white” and the negative color defaults to light-red.

Single range

To specify the range, you must specify the range endpoints:

range(lower_val, upper_val[, range_def)

type = arg Type of fill coloring for spreadsheet cells: “single” (single
color), “posneg” (positive-negative single threshold),
“range” (single range coloring), “hilo” (high-low-median),
“custom” (custom coloring).

setfillcolor—247

where range_def specifies the range endpoints:

By default, the range will be open on the lower and closed on the upper threshold limits.

You should provide a color specification for the inside range color (inclr) and outside range
color (outclr):

inclr(color_arg)

outclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the inte-
rior color defaults to light-red, and the exterior defaults to white.

High-Low-Median

When “type=hilo” you may specify the high, low, and median coloring values:

highclr(color_arg)

lowclr(color_arg)

medianclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the colors
default to light-red.

Custom

When “type=custom” you may specify custom coloring options.

You may optionally set a base background color, and then add one or more custom threshold
or range color specifications. Multiple threshold and range specifications will layer, with the
first applied first, followed by the second, and so on.

Custom Base Color

To set the base color (optional):

clr(color_arg)

as described below in “Color definitions” on page 249. If omitted, the color defaults to
“white”.

Custom Threshold

To add a threshold specification:

thresh(limit(threshold_value, threshold_spec), lowclr(below_arg), highclr(above_arg),
threshold_name])

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

248—Preliminary Updates to Command Reference

where threshold_spec is one of

and the below_arg and above_arg are one of

and color_arg are as described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

The optional threshold_name argument may be used to attach a name to the corresponding
definition.

Custom Range

To add a range specification:

range(limit(low_value, high_value, range_spec), inclr(inside_arg), outclr(outside_arg)[,
range_name])

where range_spec is one of

inside_arg is one of

outside_arg is one of

cright closed on the right

cleft closed on the left

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

color_arg solid color specification

@grad(color_arg1,
color_arg2)

gradient using color specification, where col-
or_arg1 and color_arg2 are the low and high
colors, respectively.

@trans transparent

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

setfillcolor—249

color_arg1 and color_arg2 are as described below in “Color definitions” on page 249.

The optional range_name argument may be used to attach a name to the corresponding defi-
nition.

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

Examples

To set a gray fill color for the shapes, you may use:

gmap.setfillcolor(type=single) clr(gray)

To set a fill color for negative values, you may use

gmap.setfillcolor(type=posneg) mapser(ser1)

which sets the fill color to white for non-negative values and light red for negative values of
SER1.

Similarly,

gmap.setfillcolor(type=posneg) mapser(ser1) posclr(@rgb(10, 20,
30)) negclr(purple)

sets the background sheet fill color to @rgb(10, 20, 30) for non-negative values and purple
for negative values of SER1.

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

ltred @rgb(255, 168, 168) @hex(ffa8a8)

green @rgb(0, 128, 0) @hex(008000)

black @rgb(0, 0, 0) @hex(000000)

white @rgb(255, 255, 255) @hex(ffffff)

purple @rgb(128, 0, 128) @hex(800080)

orange @rgb(255, 128, 0) @hex(ff8000)

yellow @rgb(255, 255, 0) @hex(ffff00)

gray @rgb(128, 128, 128) @hex(808080)

ltgray @rgb(192, 192, 192) @hex(c0c0c0)

250—Preliminary Updates to Command Reference

Range coloring may be specified using the “type=range” option. The command

gmap.setfillcolor(type=range) mapser(ser1) clr(ltgray) range(10,
20, cleft) inclr(@rgb(128, 0, 128)) outclr(ltred) naclr(green)

sets the background fill to @rgb(128, 0, 128) for values between 10 and 20, light-red to val-
ues outside of the range 10 to 20, and green, for missing values.

Custom coloring allows you to construct more complex background filling:

gmap.setfillcolor(type=custom) mapser(ser1) clr(@rgb(10, 0, 0))
range(limit(-10, 10, oboth), inclr(green), outclr(white)))
thresh(limit(-1, oleft), highclr(grey), lowclr(@trans))

Cross-references

See “Geomaps” on page 667 and of User’s Guide I for a discussion of geomaps. See “Value-
Based Text and Fill Coloring” on page 182 of User’s Guide I for discussion of color settings.

See also Geomap::options (p. 287) for options to control the shape border color and leg-
end.

Set the fill (background) color used in the group spreadsheet using values in the spread-
sheet or in a different series.

Syntax
group_name.setfillcolor(spec) fill_color_args

where the required spec is one of the following:

The first form specifies a colormap for all of the series in the group. The second form, uses
individual colormaps obtained from the individual series.

General Arguments

To specify the series or expression whose values will determine the background color:

• mapser(spec)

setfillcolor Group Proc

type = arg Type of fill coloring for spreadsheet cells: “single” (single
color), “posneg” (positive-negative single threshold),
“range” (single range coloring), “hilo” (high-low-median),
“custom” (custom coloring).

s = arg Colormap source: “none” (do not use a colormap and
therefore do not color) or “series” (use the same colormap
used by the individual series.

setfillcolor—251

where spec is a series name or expression.

To specify the minimum and maximum values where the coloring begins and ends:

• min(color_arg)

• max(color_arg)

To set the missing value (NA) background color:

• naclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

Type-specific Arguments

There are optional type-specific arguments that correspond to each of the type choices:

Single color

To set the single background color:

clr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

Positive-negative single threshold

You may set the color for both the non-negative (posclr) and the negative (negclr) values

posclr(color_arg)

negclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the non-
negative color defaults to “white” and the negative color defaults to light-red.

Single range

To specify the range, you must specify the range endpoints:

range(lower_val, upper_val[, range_def)

where range_def specifies the range endpoints:

By default, the range will be open on the lower and closed on the upper threshold limits.

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

252—Preliminary Updates to Command Reference

You should provide a color specification for the inside range color (inclr) and outside range
color (outclr):

inclr(color_arg)

outclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the inte-
rior color defaults to light-red, and the exterior defaults to white.

High-Low-Median

When “type=hilo” you may specify the high, low, and median coloring values:

highclr(color_arg)

lowclr(color_arg)

medianclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the colors
default to light-red.

Custom

When “type=custom” you may specify custom coloring options.

You may optionally set a base background color, and then add one or more custom threshold
or range color specifications. Multiple threshold and range specifications will layer, with the
first applied first, followed by the second, and so on.

Custom Base Color

To set the base color (optional):

clr(color_arg)

as described below in “Color definitions” on page 249. If omitted, the color defaults to
“white”.

Custom Threshold

To add a threshold specification:

thresh(limit(threshold_value, threshold_spec), lowclr(below_arg), highclr(above_arg),
threshold_name])

where threshold_spec is one of

and the below_arg and above_arg are one of

cright closed on the right

cleft closed on the left

setfillcolor—253

and color_arg are as described below in “Color definitions” on page 249. If omitted, the color
defaults to “white”.

The optional threshold_name argument may be used to attach a name to the corresponding
definition.

Custom Range

To add a range specification:

range(limit(low_value, high_value, range_spec), inclr(inside_arg), outclr(outside_arg)[,
range_name])

where range_spec is one of

inside_arg is one of

outside_arg is one of

color_arg1 and color_arg2 are as described below in “Color definitions” on page 249.

The optional range_name argument may be used to attach a name to the corresponding defi-
nition.

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

color_arg solid color specification

@grad(color_arg1,
color_arg2)

gradient using color specification, where col-
or_arg1 and color_arg2 are the low and high
colors, respectively.

@trans transparent

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

254—Preliminary Updates to Command Reference

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

Examples

To set a gray background color for all cells in the spreadsheet, you may use:

grp1.setfillcolor(type=single) clr(gray)

To set a background color for negative values, you may use

grp1.setfillcolor(type=posneg) mapser(ser1)

which sets the background sheet fill color to white for non-negative values and light red for
negative values of SER1.

Similarly,

grp1.setfillcolor(type=posneg) mapser(ser1) posclr(@rgb(10, 20,
30)) negclr(purple)

sets the background sheet fill color to @rgb(10, 20, 30) for non-negative values and purple
for negative values of SER1.

Range coloring may be specified using the “type=range” option. The command

grp1.setfillcolor(type=range) mapser(ser1) clr(ltgray) range(10,
20, cleft) inclr(@rgb(128, 0, 128)) outclr(ltred) naclr(green)

sets the background fill to @rgb(128, 0, 128) for values between 10 and 20, light-red to val-
ues outside of the range 10 to 20, and green, for missing values.

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

green @rgb(0, 128, 0) @hex(ffa8a8)

black @rgb(0, 0, 0) @hex(008000)

white @rgb(255, 255, 255) @hex(000000)

purple @rgb(128, 0, 128) @hex(ffffff)

orange @rgb(255, 128, 0) @hex(800080)

yellow @rgb(255, 255, 0) @hex(ff8000)

gray @rgb(128, 128, 128) @hex(ffff00)

ltgray @rgb(192, 192, 192) @hex(808080)

setfillcolor—255

Custom coloring allows you to construct more complex background filling:

grp1.setfillcolor(type=custom) mapser(ser1) clr(@rgb(10, 0, 0))
range(limit(-10, 10, oboth), inclr(green), outclr(white)))
thresh(limit(-1, oleft), highclr(grey), lowclr(@trans))

Cross-references

See “Value-Based Text and Fill Coloring” on page 182 of User’s Guide I.

See also Group::settextcolor (p. 430).

Set the fill (background) color used in the series spreadsheet using values in the spread-
sheet or in a different series.

Syntax
series_name.setfillcolor(t=type) fill_color_args

where:

General Arguments

To specify the series or expression whose values will determine the background color:

• mapser(spec)

where spec is a series name or expression.

To specify the minimum and maximum values where the coloring begins and ends:

• min(color_arg)

• max(color_arg)

To set the missing value (NA) background color:

• naclr(color_arg)

where color_arg is described below in “Color definitions” on page 258. If omitted, the color
defaults to “white”.

Type-specific Arguments

There are optional type-specific arguments that correspond to each of the type choices:

setfillcolor Series Procs

type = arg Type of fill coloring for spreadsheet cells: “single” (single
color), “posneg” (positive-negative single threshold),
“range” (single range coloring), “hilo” (high-low-median),
“custom” (custom coloring).

256—Preliminary Updates to Command Reference

Single color

To set the single background color:

clr(color_arg)

where color_arg is described below in “Color definitions” on page 258. If omitted, the color
defaults to “white”.

Positive-negative single threshold

You may set the color for both the non-negative (posclr) and the negative (negclr) values

posclr(color_arg)

negclr(color_arg)

where color_arg is described below in “Color definitions” on page 258. If omitted, the non-
negative color defaults to “white” and the negative color defaults to light-red.

Single range

To specify the range, you must specify the range endpoints:

range(lower_val, upper_val[, range_def)

where range_def specifies the range endpoints:

By default, the range will be open on the lower and closed on the upper threshold limits.

You should provide a color specification for the inside range color (inclr) and outside range
color (outclr):

inclr(color_arg)

outclr(color_arg)

where color_arg is described below in “Color definitions” on page 258. If omitted, the inte-
rior color defaults to light-red, and the exterior defaults to white.

High-Low-Median

When “type=hilo” you may specify the high, low, and median coloring values:

highclr(color_arg)

lowclr(color_arg)

medianclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the colors
default to light-red.

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

setfillcolor—257

Custom

When “type=custom” you may specify custom coloring options.

You may optionally set a base background color, and then add one or more custom threshold
or range color specifications. Multiple threshold and range specifications will layer, with the
first applied first, followed by the second, and so on.

Custom Base Color

To set the base color (optional):

clr(color_arg)

as described below in “Color definitions” on page 258. If omitted, the color defaults to
“white”.

Custom Threshold

To add a threshold specification:

thresh(limit(threshold_value, threshold_spec), lowclr(below_arg), highclr(above_arg),
threshold_name])

where threshold_spec is one of

and the below_arg and above_arg are one of

and color_arg are as described below in “Color definitions” on page 258. If omitted, the color
defaults to “white”.

The optional threshold_name argument may be used to attach a name to the corresponding
definition.

Custom Range

To add a range specification:

range(limit(low_value, high_value, range_spec), inclr(inside_arg), outclr(outside_arg)[,
range_name])

where range_spec is one of

cright closed on the right

cleft closed on the left

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

258—Preliminary Updates to Command Reference

inside_arg is one of

outside_arg is one of

color_arg1 and color_arg2 are as described below in “Color definitions” on page 258.

The optional range_name argument may be used to attach a name to the corresponding defi-
nition.

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

color_arg solid color specification

@grad(color_arg1,
color_arg2)

gradient using color specification, where col-
or_arg1 and color_arg2 are the low and high
colors, respectively.

@trans transparent

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

green @rgb(0, 128, 0) @hex(ffa8a8)

black @rgb(0, 0, 0) @hex(008000)

white @rgb(255, 255, 255) @hex(000000)

purple @rgb(128, 0, 128) @hex(ffffff)

orange @rgb(255, 128, 0) @hex(800080)

yellow @rgb(255, 255, 0) @hex(ff8000)

setjust—259

Examples

To set a gray background color for all cells in the spreadsheet, you may use:

myser.setfillcolor(type=single) clr(gray)

To set a background color for negative values, you may use

myser.setfillcolor(type=posneg) mapser(ser1)

which sets the background sheet fill color to white for non-negative values and light red for
negative values of SER1.

Similarly,

myser.setfillcolor(type=posneg) mapser(ser1) posclr(@rgb(10, 20,
30)) negclr(purple)

sets the background sheet fill color to @rgb(10, 20, 30) for non-negative values and purple
for negative values of SER1.

Range coloring may be specified using the “type=range” option. The command

myser.setfillcolor(type=range) mapser(ser1) clr(ltgray) range(10,
20, cleft) inclr(@rgb(128, 0, 128)) outclr(ltred) naclr(green)

sets the background fill to @rgb(128, 0, 128) for values between 10 and 20, light-red to val-
ues outside of the range 10 to 20, and green, for missing values.

Custom coloring allows you to construct more complex background filling:

myser.setfillcolor(type=custom) mapser(ser1) clr(@rgb(10, 0, 0))
range(limit(-10, 10, oboth), inclr(green), outclr(white)))
thresh(limit(-1, oleft), highclr(grey), lowclr(@trans))

Cross-references

“Value-Based Text and Fill Coloring” on page 182 of User’s Guide I.

See also ::settextcolor (p. 269).

Set the display justification for multi-line area labels.

The justification setting has no effect on single-line labels.

gray @rgb(128, 128, 128) @hex(ffff00)

ltgray @rgb(192, 192, 192) @hex(808080)

setjust Geomap Procs

260—Preliminary Updates to Command Reference

Syntax
geomap_name.setjust format_arg

where format_arg is a set of arguments used to specify format settings.

The format_arg may be formed using the following:

Examples

geomap1.setjust center

centers the labels for areas in the GEOMAP1 geomap object.

geomap1.setjust left

Left justifies the lines in the labels for the areas in the GEOMAP1 geomap object.

Cross-references

See “Geomaps” on page 667 and of User’s Guide I for a discussion of geomaps.

Set the row labels in a matrix object.

Syntax
matrix_name.setrowlabels label1 label2 label3....

Follow the setrowlabels command with a space delimited list of row labels. Note that
each row label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will use the corresponding default row names
(“R11”, “R12”, etc...).

Examples

mat1.setrowlabels USA UK FRANCE

sets the row label for the first row in matrix MAT1 to USA, the second to UK, and the third to
FRANCE.

left / center / right Horizontal justification settings

setrowlabels Matrix Procs

setrowlabels—261

Cross-references

Set the row label in a rowvector object.

Syntax
rowvector_name.setrowlabels label.

Follow the setrowlabels command with a space delimited list of row labels. Note that
each row label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will use the corresponding default row names
(“R11”, “R12”, etc...).

Examples

rvec1.setrowlabels MyResults

sets the row label for the rowvector RVEC1 to “MyResults”.

Cross-references

Set the row labels in a svector object.

Syntax
svector_name.setrowlabels label1 label2 label3....

Follow the setrowlabels command with a space delimited list of row labels. Note that
each row label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will keep the corresponding default row names
(“R11”, “R12”, etc...).

Examples

svec1.setrowlabels USA UK FRANCE

sets the row label for the first row in svector SVEC1 to USA, the second to UK, and the third
to FRANCE.

setrowlabels Rowvector Procs

setrowlabels Svector Procs

262—Preliminary Updates to Command Reference

Cross-references

Set the row labels in a sym object.

Syntax
sym_name.setrowlabels label1 label2 label3....

Follow the setrowlabels command with a space delimited list of row labels. Note that
each row label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will use the corresponding default row names
(“R11”, “R12”, etc...).

Examples

sym1.setrowlabels USA UK FRANCE

sets the row label for the first row in sym SYM1 to USA, the second to UK, and the third to
FRANCE.

Cross-references

Set the row labels in a vector object.

Syntax
vector_name.setrowlabels label1 label2 label3....

Follow the setrowlabels command with a space delimited list of row labels. Note that
each row label should not contain spaces unless it is enclosed in quotes. If you provide
fewer labels than there are rows, EViews will keep the corresponding default row names
(“R11”, “R12”, etc...).

Examples

vec1.setrowlabels USA UK FRANCE

sets the row label for the first row in vector VEC1 to USA, the second to UK, and the third to
FRANCE.

setrowlabels Sym Procs

setrowlabels Vector Procs

setshapelabel—263

Cross-references

Set which attribute to use or create a custom label to use when labeling shapes in the
geomap.

Syntax
geomap_name.setshapelabel(attribute_name) custom_label

where attribute_name is the name of an attributed in the geomap. In the case where
attribute_name is equal to “custom”, the custom_label will be used. In all other cases, the
command will be ignored.

Examples

geomap1.setshapelabel(name)

will label the areas in the GEOMAP1 geomap object using areas name attribute.

geomap1.setshapelabel (none)

turn off all area labels in the GEOMAP1 geomap object.

geomap1.setshapelabel (fillvalues)

will label the areas in the GEOMAP1 geomap object using the numerical values used for
determining area fill color. This only applicable after a colormap has been applied. All val-
ues will otherwise be NA.

geomap1.Setshapelabel(custom)
Area:[county],[state]\nPop:[fillvalues]

will create a custom 2 line label for the areas in the GEOMAP1 geomap object. The first line
of the label will read “Area:” followed by the areas county attribute, a comma, and then the
areas state. The first line will look similar to “Area:Suffolk,NY”. The second line of the label
will “Pop:” followed by the value used to color the area.Examples

Cross-references

See “Geomaps” on page 667 and of User’s Guide I for a discussion of geomaps.

setshapelabel Geomap Procs

264—Preliminary Updates to Command Reference

Set the text color used in the group spreadsheet using values in the spreadsheet or in a dif-
ferent series.

Syntax
group_name.settextcolor(spec) fill_color_args

where the required spec is one of the following:

The first form specifies a colormap for all of the series in the group. The second form, uses
individual colormaps obtained from the individual series.

General Arguments

To specify the series or expression whose values will determine the background color:

• mapser(spec)

where spec is a series name or expression.

To specify the minimum and maximum values where the coloring begins and ends:

• min(color_arg)

• max(color_arg)

To set the missing value (NA) background color:

• naclr(color_arg)

where color_arg is described below in “Color definitions” on page 267. If omitted, the color
defaults to “black”.

Type-specific Arguments

There are optional type-specific arguments that correspond to each of the type choices:

Single color

To set the single text color:

settextcolor Group Proc

type = arg Type of fill coloring for spreadsheet cells: “single” (single
color), “posneg” (positive-negative single threshold),
“range” (single range coloring), “hilo” (high-low-median),
“custom” (custom coloring).

s = arg Colormap source: “none” (do not use a colormap and
therefore do not color) or “series” (use the same colormap
used by the individual series.

settextcolor—265

clr(color_arg)

where color_arg is described below in “Color definitions” on page 267. If omitted, the color
defaults to “black”.

Positive-negative single threshold

You may set the color for both the non-negative (posclr) and the negative (negclr) values

posclr(color_arg)

negclr(color_arg)

where color_arg is described below in “Color definitions” on page 267. If omitted, the non-
negative color defaults to “black” and the negative color defaults to “red”.

Single range

To specify the range, you must specify the range endpoints:

range(lower_val, upper_val[, range_def)

where range_def specifies the range endpoints:

By default, the range will be open on the lower and closed on the upper threshold limits.

You should provide a color specification for the inside range color (inclr) and outside range
color (outclr):

inclr(color_arg)

outclr(color_arg)

where color_arg is described below in “Color definitions” on page 267. If omitted, the inte-
rior color defaults to light-red, and the exterior defaults to white.

High-Low-Median

When “type=hilo” you may specify the high, low, and median coloring values:

highclr(color_arg)

lowclr(color_arg)

medianclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the colors
default to light-red.

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

266—Preliminary Updates to Command Reference

Custom

When “type=custom” you may specify custom coloring options.

You may optionally set a base text color, and then add one or more custom threshold or
range color specifications. Multiple threshold and range specifications will layer, with the
first applied first, followed by the second, and so on.

Custom Base Color

To set the base color (optional):

clr(color_arg)

as described below in “Color definitions” on page 267. If omitted, the color defaults to
“white”.

Custom Threshold

To add a threshold specification:

thresh(limit(threshold_value, threshold_spec), lowclr(below_arg), highclr(above_arg),
threshold_name])

where threshold_spec is one of

and the below_arg and above_arg are one of

and color_arg are as described below in “Color definitions” on page 267. If omitted, the color
defaults to “white”.

The optional threshold_name argument may be used to attach a name to the corresponding
definition.

Custom Range

To add a range specification:

range(limit(low_value, high_value, range_spec), inclr(inside_arg), outclr(outside_arg)[,
range_name])

where range_spec is one of

cright closed on the right

cleft closed on the left

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

settextcolor—267

inside_arg is one of

outside_arg is one of

color_arg1 and color_arg2 are as described below in “Color definitions” on page 267.

The optional range_name argument may be used to attach a name to the corresponding defi-
nition.

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

color_arg solid color specification

@grad(color_arg1,
color_arg2)

gradient using color specification, where col-
or_arg1 and color_arg2 are the low and high
colors, respectively.

@trans transparent

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

ltred @rgb(255, 168, 168) @hex(ffa8a8)

green @rgb(0, 128, 0) @hex(008000)

black @rgb(0, 0, 0) @hex(000000)

white @rgb(255, 255, 255) @hex(ffffff)

purple @rgb(128, 0, 128) @hex(800080)

orange @rgb(255, 128, 0) @hex(ff8000)

268—Preliminary Updates to Command Reference

Examples

To set a gray text color for all cells in the spreadsheet, you may use:

grp1.settextcolor(type=single) clr(gray)

To set a text color for negative values, you may use

grp1.settextcolor(type=posneg) mapser(ser1)

which sets the text color to black for non-negative values and red for negative values of
SER1.

Similarly,

grp1.settextcolor(type=posneg) mapser(ser1) posclr(@rgb(10, 20,
30)) negclr(purple)

sets the text color to @rgb(10, 20, 30) for non-negative values and purple for negative values
of SER1.

Range coloring may be specified using the “type=range” option. The command

grp1.settextcolor(type=range) mapser(ser1) clr(ltgray) range(10,
20, cleft) inclr(@rgb(128, 0, 128)) outclr(ltred) naclr(green)

sets the text to @rgb(128, 0, 128) for values between 10 and 20, light-red to values outside
of the range 10 to 20, and green, for missing values.

Custom coloring allows you to construct more complex text coloring:

grp1.settextcolor(type=custom) mapser(ser1) clr(@rgb(10, 0, 0))
range(limit(-10, 10, oboth), inclr(green), outclr(white)))
thresh(limit(-1, oleft), highclr(grey), lowclr(@trans))

Cross-reference

See “Value-Based Text and Fill Coloring” on page 182 of User’s Guide I.

See also Group::setfillcolor (p. 420).

yellow @rgb(255, 255, 0) @hex(ffff00)

gray @rgb(128, 128, 128) @hex(808080)

ltgray @rgb(192, 192, 192) @hex(c0c0c0)

settextcolor—269

Set the text color used in the series spreadsheet using values in the spreadsheet or in a dif-
ferent series.

Syntax
series_name.settextcolor(t=type) text_color_args

where:

General Arguments

To specify the series or expression whose values will determine the background color:

• mapser(spec)

where spec is a series name or expression.

To specify the minimum and maximum values where the coloring begins and ends:

• min(color_arg)

• max(color_arg)

To set the missing value (NA) background color:

• naclr(color_arg)

where color_arg is described below in “Color definitions” on page 272. If omitted, the color
defaults to “black”.

Type-specific Arguments

There are optional type-specific arguments that correspond to each of the type choices:

Single color

To set the single text color:

clr(color_arg)

where color_arg is described below in “Color definitions” on page 272. If omitted, the color
defaults to “black”.

settextcolor Series Procs

type = arg Type of fill coloring for spreadsheet cells: “single” (single
color), “posneg” (positive-negative single threshold),
“range” (single range coloring), “hilo” (high-low-median),
“custom” (custom coloring).

270—Preliminary Updates to Command Reference

Positive-negative single threshold

You may set the color for both the non-negative (posclr) and the negative (negclr) values

posclr(color_arg)

negclr(color_arg)

where color_arg is described below in “Color definitions” on page 272. If omitted, the non-
negative color defaults to “black” and the negative color defaults to “red”.

Single range

To specify the range, you must specify the range endpoints:

range(lower_val, upper_val[, range_def)

where range_def specifies the range endpoints:

By default, the range will be open on the lower and closed on the upper threshold limits.

You should provide a color specification for the inside range color (inclr) and outside range
color (outclr):

inclr(color_arg)

outclr(color_arg)

where color_arg is described below in “Color definitions” on page 272. If omitted, the inte-
rior color defaults to light-red, and the exterior defaults to white.

High-Low-Median

When “type=hilo” you may specify the high, low, and median coloring values:

highclr(color_arg)

lowclr(color_arg)

medianclr(color_arg)

where color_arg is described below in “Color definitions” on page 249. If omitted, the colors
default to light-red.

Custom

When “type=custom” you may specify custom coloring options.

You may optionally set a base text color, and then add one or more custom threshold or
range color specifications. Multiple threshold and range specifications will layer, with the
first applied first, followed by the second, and so on.

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

settextcolor—271

Custom Base Color

To set the base color (optional):

clr(color_arg)

as described below in “Color definitions” on page 272. If omitted, the color defaults to
“white”.

Custom Threshold

To add a threshold specification:

thresh(limit(threshold_value, threshold_spec), lowclr(below_arg), highclr(above_arg),
threshold_name])

where threshold_spec is one of

and the below_arg and above_arg are one of

and color_arg are as described below in “Color definitions” on page 272. If omitted, the color
defaults to “white”.

The optional threshold_name argument may be used to attach a name to the corresponding
definition.

Custom Range

To add a range specification:

range(limit(low_value, high_value, range_spec), inclr(inside_arg), outclr(outside_arg)[,
range_name])

where range_spec is one of

inside_arg is one of

cright closed on the right

cleft closed on the left

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

cright closed on the right only

cboth closed on both sides

cleft closed on the left only

oboth open on both sides

272—Preliminary Updates to Command Reference

outside_arg is one of

color_arg1 and color_arg2 are as described below in “Color definitions” on page 272.

The optional range_name argument may be used to attach a name to the corresponding defi-
nition.

Color definitions

color_arg specifies the color to be employed in the arguments above. The color may be spec-
ified using predefined color names, by specifying the individual red-green-blue (RGB) com-
ponents using the special “@RGB” function, or by specifying the individual red-green-blue
(RGB) components in hexadecimal using the special “@HEX” function.

The predefined colors are given by the keywords (with their RGB and HEX equivalents):

Examples

To set a gray text color for all cells in the spreadsheet, you may use:

myser.settextcolor(type=single) clr(gray)

color_arg solid color specification

@grad(color_arg1,
color_arg2)

gradient using color specification, where col-
or_arg1 and color_arg2 are the low and high
colors, respectively.

@trans transparent

color_arg solid color specification

@grad(color_arg) gradient using color specification

@trans transparent

blue @rgb(0, 0, 255) @hex(0000ff)

red @rgb(255, 0, 0) @hex(ff0000)

ltred @rgb(255, 168, 168) @hex(ffa8a8)

green @rgb(0, 128, 0) @hex(008000)

black @rgb(0, 0, 0) @hex(000000)

white @rgb(255, 255, 255) @hex(ffffff)

purple @rgb(128, 0, 128) @hex(800080)

orange @rgb(255, 128, 0) @hex(ff8000)

yellow @rgb(255, 255, 0) @hex(ffff00)

gray @rgb(128, 128, 128) @hex(808080)

ltgray @rgb(192, 192, 192) @hex(c0c0c0)

similarity—273

To set a text color for negative values, you may use

myser.settextcolor(type=posneg) mapser(ser1)

which sets the text color to black for non-negative values and red for negative values of
SER1.

Similarly,

myser.settextcolor(type=posneg) mapser(ser1) posclr(@rgb(10, 20,
30)) negclr(purple)

sets the text color to @rgb(10, 20, 30) for non-negative values and purple for negative values
of SER1.

Range coloring may be specified using the “type=range” option. The command

myser.settextcolor(type=range) mapser(ser1) clr(ltgray) range(10,
20, cleft) inclr(@rgb(128, 0, 128)) outclr(ltred) naclr(green)

sets the text to @rgb(128, 0, 128) for values between 10 and 20, light-red to values outside
of the range 10 to 20, and green, for missing values.

Custom coloring allows you to construct more complex text coloring:

myser.settextcolor(type=custom) mapser(ser1) clr(@rgb(10, 0, 0))
range(limit(-10, 10, oboth), inclr(green), outclr(white)))
thresh(limit(-1, oleft), highclr(grey), lowclr(@trans))

Cross-references

“Value-Based Text and Fill Coloring” on page 182 of User’s Guide I.

See also ::setfillcolor (p. 255).

Compute the PMG Hausman test for similarity against mean-group and dynamic fixed
effects estimators (in panel equations estimated by ARDL/PMG)

Syntax
eq_name.similarity(options)

Options

Example
pmg_eq.similarity

similarity Equation Views

p Print output.

274—Preliminary Updates to Command Reference

displays a spool object with several tables containing the results of the Hausman test, com-
parisons of results, and auxiliary estimation results employed in computing the test statistic.

Cross-references

Exponential smoothing.

Forecasts a series using one of a number of exponential smoothing techniques. By default,
smooth estimates the damping parameters of the smoothing model to minimize the sum of
squared forecast errors, but you may specify your own values for the damping parameters.

smooth automatically calculates in-sample forecast errors and puts them into the series
RESID.

Syntax
series_name.smooth(method) smooth_name [freq]

You should follow the smooth keyword with a name for the smoothed series. You must also
specify the smoothing method in parentheses. The optional freq may be used to override the
default for the number of periods in the seasonal cycle. By default, this value is set to the
workfile frequency (e.g. — 4 for quarterly data). For undated data, the default is 5.

Options
Smoothing method options

smooth Series Procs

s[,x] Single exponential smoothing for series with no trend. You
may optionally specify a number x between zero and one
for the mean parameter.

d[,x] Double exponential smoothing for series with a trend. You
may optionally specify a number x between zero and one
for the mean parameter.

smooth—275

Other Options:

If you wish to set only some of the damping parameters and let EViews estimate the other
parameters, enter the letter “e” where you wish the parameter to be estimated.

If the number of seasons is different from the frequency of the workfile (an unusual case
that arises primarily if you are using an undated workfile for data that are not monthly or
quarterly), you should enter the number of seasons after the smoothed series name. This
optional input will have no effect on forecasts without seasonal components.

Examples

sales.smooth(s) sales_f

smooths the SALES series by a single exponential smoothing method and saves the
smoothed series as SALES_F. EViews estimates the damping (smoothing) parameter and dis-
plays it with other forecast statistics in the SALES series window.

tb3.smooth(n,e,.3) tb3_hw

smooths the TB3 series by a Holt-Winters no seasonal method and saves the smoothed
series as TB3_HW. The mean damping parameter is estimated while the trend damping
parameter is set to 0.3.

smpl @first @last-10

order.smooth(m,.1,.1,.1) order_hw

smpl @all

graph gra1.line order order_hw

show gra1

n[,x,y] Holt-Winters without seasonal component. You may
optionally specify numbers x and y between zero and one
for the mean and trend parameters, respectively.

a[,x,y,z] Holt-Winters with additive seasonal component. You may
optionally specify numbers x, y, and z, between zero and
one for the mean, trend, and seasonal parameters, respec-
tively.

m[,x,y,z] Holt-Winters with multiplicative seasonal component. You
may optionally specify numbers x, y, and z, between zero
and one for the mean, trend, and seasonal parameters,
respectively.

forcsmpl =
arg

Forecast sample (optional). If forecast sample is not pro-
vided, the workfile sample will be employed.

prompt Force the dialog to appear from within a program.

p Print a table of forecast statistics.

276—Preliminary Updates to Command Reference

smooths the ORDER series by a Holt-Winters multiplicative seasonal method leaving the last
10 observations. The damping parameters are all set to 0.1. The last three lines plot and dis-
play the actual and smoothed series over the full sample.

Cross-references

See “Exponential Smoothing” on page 551 of User’s Guide I for a discussion of exponential
smoothing methods. See also ::ets (p. 154).

Compute symmetry test for distributed lag variables in an equation estimated with a non-
linear ARDL (NARDL) specification.

This view displays a table object with the NARDL symmetry test. The top part of the table is
a is a summary of the test. This is followed by three additional sections with test statistics
and corresponding p-values for relevant regressors tests for: 1) long-run asymmetry, 2)
short-run asymmetry, 3) both long and short-run asymmetry.

Syntax
eq_name.symmtest(options)

Options

Example
ardl_eq.symmtest

computes the NARDL symmetry tests for relevant regressors.

Cross-references

Variance decomposition in VARs.

Syntax
var_name.vdecomp(n, options) series_list [@ @ ordering]

List the series names in the VAR whose variance decomposition you would like to compute.
You may optionally specify the ordering for the factorization after two “@”-signs.

You must specify the number of periods over which to compute the variance decomposi-
tions.

symmtest Equation Views

p Print output.

vdecomp Var Views

n

vdecomp—277

Options

If you use the “matbys=” or “matbyr=” options to store the results in a matrix, two matri-
ces will be returned. The matrix with the specified name contains the variance decomposi-
tions, while the matrix with “_FSE” appended to the name contains the forecast standard
errors for each response variable. If you have requested Monte Carlo standard errors, there

g Display combined graphs, with the decompositions for
each variable shown in a graph.

m Display multiple graphs, with each response-shock pair
shown in a separate graph.

t (default) Show numerical results in table.

imp=arg
(default=“chol”)

Type of factorization for the decomposition: “chol” (Chole-
sky with d.f. correction), “mlechol” (Cholesky without d.f.
correction), “struct” (structural).

The structural factorization is based on the estimated struc-
tural VAR. To use this option, you must first estimate the
structural decomposition; see Var::svar (p. 1045).
The option “imp=mlechol” is provided for backward com-
patibility with EViews 3.x and earlier.

se=mcarlo Monte Carlo standard errors. You must specify the number
of replications with the “rep=” option.

Currently available only when you have specified the
Cholesky factorization (using the “imp=chol” option).

rep=integer Number of Monte Carlo replications to be used in comput-
ing the standard errors. Must be used with the
“se=mcarlo” option.

cilevels=arg
(default = “0.95”)

Confidence interval coverage: space limited list of numbers
between 0 and 1.

uselines Use lines instead of shading for confidence intervals.

matbys=name Save responses by shocks (impulses) in named matrix. The
first column is the response of the first variable to the first
shock, the second column is the response of the second
variable to the first shock, and so on.

matbyr=name Save responses by response series in named matrix. The
first column is the response of the first variable to the first
shock, the second column is the response of the first vari-
able to the second shock, and so on.

prompt Force the dialog to appear from within a program.

p Print results.

278—Preliminary Updates to Command Reference

will be a third matrix with “_SE” appended to the name which contains the variance decom-
position standard errors.

Examples
var var1.ls 1 4 m1 gdp cpi

var1.vdecomp(10,t) gdp

The first line declares and estimates a VAR with three variables and lags from 1 to 4. The
second line tabulates the variance decompositions of GDP up to 10 periods using the order-
ing as specified in VAR1.

var1.vdecomp(10,t) gdp @ @ cpi gdp m1

performs the same variance decomposition as above using a different ordering.

Cross-references

See “Variance Decomposition” on page 864 of User’s Guide II for additional details.

See also ::impulse (p. 216).

Open a workfile. Reads in a previously saved workfile from disk, or reads the contents of a
foreign data source into a new workfile.

The opened workfile becomes the default workfile; existing workfiles in memory remain on
the desktop but become inactive.

Syntax
wfopen [path\]source_name

wfopen(options) source_description [table_description] [variables_description]

wfopen(options) source_description [table_description] [dataset_modifiers]

where path is an optional local path or URL.

There are three basic forms of the wfopen command:

• the first form is used by EViews native (“EViews and MicroTSP” on page 281) and
time series database formats (“Time Series Formats” on page 281).

• the second form used for raw data files—Excel, Lotus, ASCII text, and binary files
(“Raw Data Formats” on page 282).

• the third form is used with the remaining source formats, which we term dataset for-
mats, since the data have already been arranged in named variables (“Datasets” on
page 291).

wfopen Object Container, Data, and File Commands

wfopen—279

(See “Options” on page 280 for a description of the supported source formats and corre-
sponding types.)

In all three cases, the workfile or external data source should be specified as the first argu-
ment following the command keyword and options.

• In most cases, the external data source is a file, so the source_description will be the
description of the file (including local path or URL information, if necessary). Alterna-
tively, the external data source may be the output from a web server, in which case
the URL should be provided. Similarly, when reading from an ODBC query, the ODBC
DSN (data source name) should be used as the source_description.

If the source_description contains spaces, it must be enclosed in (double) quotes.

For raw and dataset formats, you may use table_description to provide additional informa-
tion about the data to be read:

• Where there is more than one table that could be formed from the specified external
data source, a table_description may be provided to select the desired table. For exam-
ple, when reading from an Excel file, an optional cell range may be provided to specify
which data are to be read from the spreadsheet. When reading from an ODBC data
source, a SQL query or table name must be used to specify the table of data to be
read.

• In raw data formats, the table_description allows you to provide additional informa-
tion regarding names and descriptions for variables to be read, missing values codes,
settings for automatic format, and data range subsetting.

• When working with text or binary files, the table_description must be used to describe
how to break up the file into columns and rows.

For raw and non-EViews dataset formats, you may use the dataset_modifiers specification to
select the set of variables, maps (value labels), and observations to be read from the source
data. The dataset_modifiers consists of the following keyword delimited lists:

[@keep keep_list] [@drop drop_list] [@keepmap keepmap_list] [@dropmap
dropmap_list] [@selectif condition]

• The @keep and @drop keywords, followed by a list of names and patterns, are used to
specify variables to be retain or dropped. Similarly, the @keepmap and @dropmap
keywords followed by lists of name patterns controls the reading of value labels. The
keyword @selectif, followed by an if condition (e.g., “if age>30 and gender=1”)
may be used to select a subset of the observations in the original data. By default, all
variables, value labels, and observations are read.

By default, all variables, maps and observations in the source file will be read.

280—Preliminary Updates to Command Reference

Options

For the most part, you should not need to specify a “type=” option as EViews will automat-
ically determine the type from the filename.

The following table summaries the various source formats and types, along with the corre-
sponding “type=” keywords:

type=arg, t=arg Optional type specification: (see table below).

Note that ODBC support is provided only in the EViews
Enterprise Edition.

link Link the object to the source data so that the values can be
refreshed at a later time.

wf=wf_name Optional name for the new workfile.

page=page_name Optional name for the page in the new workfile.

prompt Force the dialog to appear from within a program.

Source Type Option Keywords

Access dataset “access”

Aremos-TSD time series database “a”, “aremos”, “tsd”

Binary raw data “binary”

dBASE dataset “dbase”

Excel (through 2003) raw data “excel”

Excel 2007 (xml) raw data “excelxml”

EViews Workfile native ---

Gauss Dataset dataset “gauss”

GiveWin/PcGive time series database “g”, “give”

HTML raw data “html”

Lotus 1-2-3 raw data “lotus”

ODBC Dsn File dataset “dsn”

ODBC Query File dataset “msquery”

ODBC Data Source dataset “odbc”

MicroTSP Workfile native “dos”, “microtsp”

MicroTSP Mac Workfile native “mac”

RATS 4.x time series database “r”, “rats”

RATS Portable / TROLL time series database “l”, “trl”

SAS Program dataset “sasprog”

wfopen—281

EViews and MicroTSP

The syntax for EViews and MicroTSP files is:

wfopen [path\]workfile_name

where path is an option local path or URL.

Examples

wfopen c:\data\macro

loads a previously saved EViews workfile “Macro.WF1” from the “data” directory in the C
drive.

wfopen c:\tsp\nipa.wf

loads a MicroTSP workfile “Nipa.WF”. If you do not use the workfile type option, you
should add the extension “.WF” to the workfile name when loading a DOS MicroTSP work-
file. An alternative method specifies the type explicitly:

wfopen(type=dos) nipa

The command:

wfopen "<mydropboxdrive>\folder\nipa.wf1"

will open the file from the cloud location MYDROPBOXDRIVE.

Time Series Formats

The syntax for time series format files (Aremos-TSD, GiveWin/PcGive, RATS, RATS Porta-
ble/TROLL, TSP Portable) is:

wfopen(options) [path\]source_name

where path is an optional local path or URL.

If the source files contain data of multiple frequencies, the resulting workfile will be of the
lowest frequency, and higher frequency data will be converted to this frequency. If you wish
to obtain greater control over the workfile creation, import, or frequency conversion pro-
cesses, we recommend that you open the file using dbopen (p. 139) and use the database
tools to create your workfile.

SAS Transport dataset “sasxport”

SPSS dataset “spss”

SPSS Portable dataset “spssport”

Stata dataset “stata”

Text / ASCII raw data “text”

TSP Portable time series database “t”, “tsp”

282—Preliminary Updates to Command Reference

Aremos Example

wfopen dlcs.tsd

wfopen(type=aremos) dlcs.tsd

open the AREMOS-TSD file DLCS.

GiveWin/PcGive Example

wfopen "f:\project\pc give\data\macrodata.in7"

wfopen(type=give) "f:\project\pc give\data\macrodata"

open the PcGive file MACRODATA.

Rats Examples

wfopen macrodata.rat"

wfopen macrodata.trl

read the native RATS 4.x file MACRODATA.RAT and the RATS Portable/TROLL file
“Macrodata.TRL”.

TSP Portable Example

wfopen macrodata.tsp

reads the TSP portable file “Macrodata.TSP”.

Raw Data Formats

The command for reading raw data (Excel 97-2003, Excel 2007, HTML, ASCII text, Binary,
Lotus 1-2-3) is

wfopen(options) source_description [table_description] [variables_description]
[@keep keep_list] [@drop drop_list] [@keepmap keepmap_list] [@dropmap
dropmap_list] [@selectif condition]

where the syntax of the table_description and variables_description differs slightly depend-
ing on the type of file.

Excel and Lotus Files

The syntax for reading Excel and Lotus files is:

wfopen(options) source_description [table_description] [variables_description]

The following table_description elements may be used when reading Excel and Lotus data:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-

wfopen—283

cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying
an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “namepos = [first|firstatt|last|lastatt|all|none|attonly|discard|custom]”, which row(s)
of the column headers should be used to form the column name, and also how to use
the rest. The setting “first” (or “last”) refers to the object name being in the first (or
last) column header row, and all other rows as the object's description. Similarly,
“firstatt” (or “lastatt”) will use the first (or last) row as the name field, but will use all
others as a custom attribute. The setting “all” will concatenate all column header
fields into the object's name. “none” will concatenate all column header fields into
the object's description. “attonly” will save all column header fields into the object's
custom attributes. “discard” will skip all header rows altogether, and “custom” will
allow you to specify explicitly how to treat each column header row using the
“colheadnames=” argument. The default setting is “all” if no “colheadnames=” is
specified, otherwise “custom”.

• "colheadnames = ("arg1", "arg2")", required when “namepos=custom”. Specifies
the name & type of each column header row. “Name” will be mapped to the object
name, “Description” to the object's description field, and the rest will be stored as
custom object attributes. Any blank name will cause that column header row to be
skipped.

• “nonames”, the file does not contain a column header (same as “colhead=0”).

• “names=("arg1","arg2",…)”, user specified column names, where arg1, arg2, … are
names of the first series, the second series, etc. when names are provided, these over-
ride any names that would otherwise be formed from the column headers.

• “descriptions=("arg1","arg2",…)”, user specified descriptions of the series. If
descriptions are provided, these override any descriptions that would otherwise be
read from the data.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w” (EViews automatic detection). Note that the types appear without
quotes: e.g., “types=(a,a,a)”.

284—Preliminary Updates to Command Reference

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int| all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a “range=” argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the “na=” argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the “scan=” argument to instruct EViews to look at more rows. In addition, you may
want to specify a the “na=” value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs=int”, last observation to be read from the table of data (default is last obser-
vation of the file). This option may be used to read only part of the file, which may be
useful for testing.

Excel Examples

wfopen "c:\data files\data.xls"

loads the active sheet of DATA.XLS into a new workfile.

wfopen(page=mypage) "c:\data files\data.xls" range="GDP data"
@drop X

reads the data contained in the “GDP data” sheet of “Data.XLS” into the MYPAGE page of a
new workfile. The data for the series X is dropped, and the name of the new workfile page is
“GDP”.

To load the Excel file containing US Macro Quarterly data from Stock and Watson’s Introduc-
tion to Econometrics you may use the command:

wfopen
http//wps.aw.com/wps/media/objects/3254/3332253/datasets2e/dat
asets/USMacro_Quarterly.xls

which will load the Excel file directly into EViews from the publisher’s website (as of
08/2009).

HTML Files

The syntax for reading HTML pages is:

wfopen(options) source_description [table_description] [variables_description]

The following table_description elements may be used when reading an HTML file or page:

wfopen—285

• “table = arg”, where arg specifies which table to read in an HTML file/page contain-
ing multiple tables.

When specifying arg, you should remember that tables are named automatically fol-
lowing the pattern “Table01”, “Table02”, “Table03”, etc. If no table name is specified,
the largest table found in the file will be chosen by default. Note that the table num-
bering may include trivial tables that are part of the HTML content of the file, but
would not normally be considered as data tables by a person viewing the page.

• “skip = int”, where int is the number of rows to discard from the top of the HTML
table.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “namepos = [first|firstatt|last|lastatt|all|none|attonly|discard|custom]”, which row(s)
of the column headers should be used to form the column name, and also how to use
the rest. The setting “first” (or “last”) refers to the object name being in the first (or
last) column header row, and all other rows as the object's description. Similarly,
“firstatt” (or “lastatt”) will use the first (or last) row as the name field, but will use all
others as a custom attribute. The setting “all” will concatenate all column header
fields into the object's name. “none” will concatenate all column header fields into
the object's description. “attonly” will save all column header fields into the object's
custom attributes. “discard” will skip all header rows altogether, and “custom” will
allow you to specify explicitly how to treat each column header row using the
“colheadnames=” argument. The default setting is “all” if no “colheadnames=” is
specified, otherwise “custom”.

• "colheadnames = ("arg1", "arg2")", required when “namepos=custom”. Specifies
the name & type of each column header row. “Name” will be mapped to the object
name, “Description” to the object's description field, and the rest will be stored as
custom object attributes. Any blank name will cause that column header row to be
skipped.

• “nonames”, the file does not contain a column header (same as “colhead=0”).

• “names=("arg1","arg2",…)”, user specified column names, where arg1, arg2, … are
names of the first series, the second series, etc. when names are provided, these over-
ride any names that would otherwise be formed from the column headers.

• “descriptions=("arg1","arg2",…)”, user specified descriptions of the series. If
descriptions are provided, these override any descriptions that would otherwise be
read from the data.

286—Preliminary Updates to Command Reference

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w”(EViews automatic detection). Note that the types appear without
quotes: e.g., “types=(a,a,a)”.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a "range=" argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the "na=" argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the "scan=" argument to instruct EViews to look at more rows. In addition, you may
want to specify a the "na=" value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

HTML Examples

wfopen "c:\data.html"

loads into a new workfile the data located on the HTML file “Data.HTML” located on the C:\
drive

wfopen(type=html)
"http://www.tradingroom.com.au/apps/mkt/forex.ac" colhead=3,
namepos=first

loads into a new workfile the data with the given URL located on the website site
“http://www.tradingroom.com.au”. The column header is set to three rows, with the first
row used as names for columns, and the remaining two lines used to form the descriptions.

Text and Binary Files

The syntax for reading text or binary files is:

wfopen(options) source_description [table_description] [variables_description]

If a table_description is not provided, EViews will attempt to read the file as a free-format
text file. The following table_description elements may be used when reading a text or
binary file:

wfopen—287

• “ftype = [ascii|binary]” specifies whether numbers and dates in the file are stored in
a human readable text (ASCII), or machine readable (Binary) form.

• “rectype = [crlf|fixed|streamed]” describes the record structure of the file:

“crlf”, each row in the output table is formed using a fixed number of lines from
the file (where lines are separated by carriage return/line feed sequences). This is
the default setting.

“fixed”, each row in the output table is formed using a fixed number of charac-
ters from the file (specified in “reclen= arg”). This setting is typically used for
files that contain no line breaks.

“streamed”, each row in the output table is formed by reading a fixed number of
fields, skipping across lines if necessary. This option is typically used for files that
contain line breaks, but where the line breaks are not relevant to how rows from
the data should be formed.

• “reclines =int”, number of lines to use in forming each row when “rectype=crlf”
(default is 1).

• “reclen=int”, number of bytes to use in forming each row when “rectype=fixed”.

• “recfields=int”, number of fields to use in forming each row when “rec-
type=streamed”.

• “skip=int”, number of lines (if rectype is “crlf”) or bytes (if rectype is not “crlf”) to
discard from the top of the file.

• “comment=string“, where string is a double-quoted string, specifies one or more
characters to treat as a comment indicator. When a comment indicator is found,
everything on the line to the right of where the comment indicator starts is ignored.

• “emptylines=[keep|drop]”, specifies whether empty lines should be ignored
(“drop”), or treated as valid lines (“keep”) containing missing values. The default is
to ignore empty lines.

• “tabwidth=int”, specifies the number of characters between tab stops when tabs are
being replaced by spaces (default=8). Note that tabs are automatically replaced by
spaces whenever they are not being treated as a field delimiter.

• “fieldtype=[delim|fixed|streamed|undivided]”, specifies the structure of fields within
a record:

“Delim”, fields are separated by one or more delimiter characters

“Fixed”, each field is a fixed number of characters

“Streamed”, fields are read from left to right, with each field starting immediately
after the previous field ends.

“Undivided”, read entire record as a single series.

288—Preliminary Updates to Command Reference

• “quotes=[single|double|both|none]”, specifies the character used for quoting fields,
where “single” is the apostrophe, “double” is the double quote character, and “both”
means that either single or double quotes are allowed (default is “both”). Characters
contained within quotes are never treated as delimiters.

• “singlequote“, same as “quotes = single”.

• “delim=[comma|tab|space|dblspace|white|dblwhite]”, specifies the character(s) to
treat as a delimiter. “White” means that either a tab or a space is a valid delimiter. You
may also use the abbreviation “d=” in place of “delim=”.

• “custom="arg1"”, specifies custom delimiter characters in the double quoted string.
Use the character “t” for tab, “s” for space and “a” for any character.

• “mult=[on|off]”, to treat multiple delimiters as one. Default value is “on” if “delim”
is “space”, “dblspace”, “white”, or “dblwhite”, and “off” otherwise.

• “endian = [big|little]”, selects the endianness of numeric fields contained in binary
files.

• “string = [nullterm|nullpad|spacepad]”, specifies how strings are stored in binary
files. If “nullterm”, strings shorter than the field width are terminated with a single
zero character. If “nullpad”, strings shorter than the field width are followed by extra
zero characters up to the field width. If “spacepad”, strings shorter than the field
width are followed by extra space characters up to the field width.

• “byrow”, transpose the incoming data. This option allows you to import files where
the series are contained in rows (one row per series) rather than columns.

• “lastcol”, include implied last column. For lines that end with a delimiter, this option
adds an additional column. When importing a CSV file, lines which have the delimiter
as the last character (for example: “name, description, date”), EViews normally deter-
mines the line to have 3 columns. With the above option, EViews will determine the
line to have 4 columns. Note this is not the same as a line containing “name, descrip-
tion, date”. In this case, EViews will always determine the line to have 3 columns
regardless if the option is set.

A central component of the table_description element is the format statement. You may
specify the data format using the following table descriptors:

• Fortran Format:

fformat=([n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)

where Type specifies the underlying data type, and may be one of the following,

I - integer

F - fixed precision

E - scientific

wfopen—289

A - alphanumeric

X - skip

and n1, n2, ... are the number of times to read using the descriptor (default=1). More
complicated Fortran compatible variations on this format are possible.

• Column Range Format:

rformat="[n1]Type[Width][.Precision], [n2]Type[Width][.Precision], ...)"

where optional type is “$” for string or “#” for number, and n1, n2, n3, n4, etc. are the
range of columns containing the data.

• C printf/scanf Format:

cformat="fmt"

where fmt follows standard C language (printf/scanf) format rules.

The optional variables_description may be formed using the elements:

• “colhead=int”, number of table rows to be treated as column headers.

• “namepos = [first|firstatt|last|lastatt|all|none|attonly|discard|custom]”, which row(s)
of the column headers should be used to form the column name, and also how to use
the rest. The setting “first” (or “last”) refers to the object name being in the first (or
last) column header row, and all other rows as the object's description. Similarly,
“firstatt” (or “lastatt”) will use the first (or last) row as the name field, but will use all
others as a custom attribute. The setting “all” will concatenate all column header
fields into the object's name. “none” will concatenate all column header fields into
the object's description. “attonly” will save all column header fields into the object's
custom attributes. “discard” will skip all header rows altogether, and “custom” will
allow you to specify explicitly how to treat each column header row using the
“colheadnames=” argument. The default setting is “all” if no “colheadnames=” is
specified, otherwise “custom”.

• "colheadnames = ("arg1", "arg2")", required when “namepos=custom”. Specifies
the name & type of each column header row. “Name” will be mapped to the object
name, “Description” to the object's description field, and the rest will be stored as
custom object attributes. Any blank name will cause that column header row to be
skipped.

• “nonames”, the file does not contain a column header (same as “colhead=0”).

• “names=("arg1", "arg2",…)”, user specified column names, where arg1, arg2, … are
names of the first series, the second series, etc. when names are provided, these over-
ride any names that would otherwise be formed from the column headers.

290—Preliminary Updates to Command Reference

• “descriptions=("arg1", "arg2",…)”, user specified descriptions of the series. If
descriptions are provided, these override any descriptions that would otherwise be
read from the data.

• “types=("arg1","arg2",…)”, user specified data types of the series. If types are pro-
vided they will override the types automatically detected by EViews. You may use any
of the following format keywords: “a” (character data), “f” (numeric data), “d”
(dates), or “w” (EViews automatic detection). Note that the types appear without
quotes: e.g., “types=(a,a,a)”.

• “na="arg1"”, text used to represent observations that are missing from the file. The
text should be enclosed on double quotes.

• “scan=[int|all]”, number of rows of the table to scan during automatic format detec-
tion (“scan=all” scans the entire file). Note: If a “range=” argument is not specified,
then EViews will only scan the first five rows of data to try and determine the data for-
mat for each column. Likewise, if the “na=” argument is not specified, EViews will
also try to determine possible NA values by looking for repeated values in the same
rows. If the first five rows are not enough to correctly determine the data format, use
the “scan=” argument to instruct EViews to look at more rows. In addition, you may
want to specify a the “na=” value to override any dynamic NA value that EViews may
determine on its own.

• “firstobs=int”, first observation to be imported from the table of data (default is 1).
This option may be used to start reading rows from partway through the table.

• “lastobs = int”, last observation to be read from the table of data (default is last
observation of the file). This option may be used to read only part of the file, which
may be useful for testing.

Text and Binary File Examples (.txt, .csv, etc.)

wfopen c:\data.csv skip=5, names=(gdp, inv, cons)

reads “Data.CSV” into a new workfile page, skipping the first 5 rows and naming the series
GDP, INV, and CONS.

wfopen(type=text) c:\date.txt delim=comma

loads the comma delimited data DATE.TXT into a new workfile.

wfopen(type=raw) c:\data.txt skip=8, rectype=fixed,
format=(F10,X23,A4)

loads a text file with fixed length data into a new workfile, skipping the first 8 rows. The
reading is done as follows: read the first 10 characters as a fixed precision number, after that,
skip the next 23 characters (X23), and then read the next 4 characters as strings (A4).

wfopen(type=raw) c:\data.txt rectype=fixed, format=2(4F8,2I2)

wfopen—291

loads the text file as a workfile using the specified explicit format. The data will be a repeat
of four fixed precision numbers of length 8 and two integers of length 2. This is the same
description as “format=(F8,F8,F8,F8,I2,I2,F8,F8,F8,F8,I2,I2)”.

wfopen(type=raw) c:\data.txt rectype=fixed, rformat="GDP 1-2 INV 3
CONS 6-9"

loads the text file as a workfile using column range syntax. The reading is done as follows:
the first series is located at the first and second character of each row, the second series
occupies the 3rd character, the third series is located at character 6 through 9. The series will
named GDP, INV, and CONS.

Datasets

The syntax for reading data from the remaining sources (Access, Gauss, ODBC, SAS pro-
gram, SAS transport, SPSS, SPSS portable, Stata) is:

wfopen(options) source_description table_description [@keep keep_list] [@drop
drop_list] [@selectif condition]

Note that for this purpose we view Access and ODBC as datasets.

ODBC or Microsoft Access

The syntax for reading from an ODBC or Microsoft Access data source is

wfopen(options) source_description table_description [@keep keep_list] [@drop
drop_list] [@selectif condition]

When reading from an ODBC or Microsoft Access data source, you must provide a table_de-
scription to indicate the table of data to be read. You may provide this information in one of
two ways: by entering the name of a table in the data source, or by including an SQL query
statement enclosed in double quotes.

Note that ODBC support is provided only in the EViews Enterprise Edition.

ODBC Examples

wfopen c:\data.dsn CustomerTable

opens in a new workfile the table named CUSTOMERTABLE from the ODBC database
described in the DATA.DSN file.

wfopen(type=odbc) "my server" "select * from customers where id>30"
@keep p*

opens in a new workfile with SQL query from database using the server “MY SERVER”,
keeping only variables that begin with P. The query selects all variables from the table CUS-
TOMERS where the ID variable takes a value greater than 30.

292—Preliminary Updates to Command Reference

Other Dataset Types

The syntax for reading data from the remaining sources (Gauss, SAS program, SAS trans-
port, SPSS, SPSS portable, Stata) is:

wfopen(options) source_description [@keep keep_list] [@drop drop_list] [@selectif
condition]

Note that no table_description is required.

SAS Program Example

If a data file, “Sales.DAT”, contains the following space delimited data:

AZ 110 1002

CA 200 2003

NM 90 908

OR 120 708

WA 113 1123

UT 98 987

then the following SAS program file can be read by EViews to open the data:

Data sales;

infile sales.dat';

input state $ price sales;

run;

SAS Transport Examples

wfopen(type=sasxport) c:\data.xpt

loads a SAS transport file “data.XPT” into a new workfile.

wfopen c:\inst.sas

creates a workfile by reading from external data using the SAS program statements in
“Inst.SAS”. The program may contain a limited set of SAS statements which are commonly
used in reading in a data file.

Stata Examples

To load a Stata file “Data.DTA” into a new workfile, dropping maps MAP1 and MAP2, you
may enter:

wfopen c:\data.dta @dropmap map1 map2

To download the sports cards dataset from Stock and Watson’s Introduction to Econometrics
you may use the command:

wfsave—293

wfopen
http://wps.aw.com/wps/media/objects/3254/3332253/datasets2e/da
tasets/Sportscards.dta

which will load the Stata dataset directly into EViews from the publisher’s website (as of
08/2009).

Cross-references

See Chapter 3. “Workfile Basics,” on page 41 of User’s Guide I for a discussion of workfiles.

See also pageload (p. 228), read (p. 478), fetch (p. 363), wfsave (p. 293), wfclose
(p. 531) and pagesave (p. 229).

Save the default workfile as an EViews workfile (.wf1 file) or as a foreign file or data
source.

Syntax
wfsave(options) [path\]filename

wfsave(options) source_description [@keep keep_list] [@drop drop_list] [@keepmap
keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

wfsave(options) source_description table_description [@keep keep_list] [@drop
drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl
smpl_spec]

saves the active workfile in the specified directory using filename. By default, the workfile is
saved as an EViews workfile, but options may be used to save all or part of the active page in
a foreign file or data source.

When saving to a foreign data file, the basic specification consists of a “type=” option and
source_description and table_description arguments which specify the format of the foreign
data file. See below for details on source_description and table_description.

The remaining optional elements specify the actual elements to be saved.

Options
Workfile (WF1) Save Options

wfsave Object Container, Data, and File Commands

1 Save using single precision.

2 Save using double precision.

c Save compressed workfile (not compatible with EViews
versions prior to 5.0).

294—Preliminary Updates to Command Reference

Workfile (WF2) Save Options

The default workfile save settings use the global options.

Foreign Source Save Options

These options only apply when saving your file to a format other than an EViews workfile.
note that some of the options only apply to specific file types.

jf Save JSON with formatting making it easier to read.
Increases file size.

nojf Saves JSON without any formatting. Minimizes file size.

gzip Saves JSON as a compressed gzip file. Minimizes file size.

nogzip Saves JSON without any gzip compression (i.e., simple text
file). Increases file size.

type=arg, t=arg Optional type specification: (see table below).

Note that ODBC support is provided only in the EViews
Enterprise Edition.

mode=arg Specify whether to create a new file, overwrite an existing
file, or update an existing file. arg may be “create” (create
new file only; error on attempt to overwrite) or “update”
(update an existing file, only overwriting the area specified
by the range= table_description).

If a “mode=” option is not provided, EViews will create a
new file, unless the file already exists in which case it will
overwrite it.

Note that the “mode=update” option is only available for:
1) Excel versions through 2003, if Excel is installed, and 2)
Excel 2007 (xml).

maptype=arg Write selected maps as: numeric (“n”), character (“c”),
both numeric and character (“b”).

nomapval Do not write mapped values for series with attached value
labels (the default is to write the mapped values if avail-
able).

noid Do not write observation identifiers to foreign data files (by
default, EViews will include a column with the date or
observation identifier).

wfsave—295

The following table summaries the various formats along with the corresponding “type=”
keywords:

nonames Do not write variable names (only applicable to file for-
mats that support writing raw data without variable
names).

na=arg String value to be used for NAs.

attr Include object attributes (if the output type supports it).
When specified, the first column will contain attribute
names and each attribute value will be displayed after the
name row.

 Type Keywords Supports Attributes

Access “access”

Aremos-TSD “a”, “aremos”, “tsd”

Binary “binary”

dBASE “dbase”

Excel (through 2003) “excel” Yes

Excel 2007 (xml) “excelxml” Yes

EViews Workfile ---

Gauss Dataset “gauss”

GiveWin/PcGive “g”, “give”

HTML “html”

JSON “json”

JSON (legacy output gener-
ated by EViews prior to
EViews 12)

“jsonlegacy”

EViews workfile (WF1) “wf1”

EViews workfile (WF2) “wf2”

Lotus 1-2-3 “lotus”

ODBC Dsn File “dsn”

ODBC Data Source “odbc”

MicroTSP Workfile “dos”, “microtsp”

MicroTSP Mac Workfile “mac”

RATS 4.x “r”, “rats”

RATS Portable / TROLL “l”, “trl”

SAS Program “sasprog”

296—Preliminary Updates to Command Reference

Note that if you wish to save your Excel 2007 XML file with macros enabled, you should
specify the explicit filename extension “.XLSM”.

Foreign Data Descriptions

When saving to a foreign data format the base specification consists of a basic specification
of source_description and table_description which specify the exact details of the format.

The command for saving as foreign data formats is

wfsave(options) source_description [table_description] [@keep keep_list] [@drop
drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl
smpl_spec]

where the syntax of the table_description and variables_description differs slightly depend-
ing on the type of file.

• Note that saving as a foreign data file, with the exception of JSON, will save the cur-
rent workfile page only.

• The JSON type will save all series objects from all pages of the current working, ignor-
ing any @keep, @drop, and @smpl arguments.

Excel Files

The base syntax for writing Excel files is:

wfsave(options) source_description [table_description]

where source_description is the path and name of the Excel file to be saved, and where the
following table_description elements may be employed:

• “range = arg”, where arg is a range of cells to read from the Excel workbook, follow-
ing the standard Excel format [worksheet!][topleft_cell[:bottomright_cell]].

If the worksheet name contains spaces, it should be placed in single quotes. If the
worksheet name is omitted, the cell range is assumed to refer to the currently active
sheet. If only a top left cell is provided, a bottom right cell will be chosen automati-
cally to cover the range of non-empty cells adjacent to the specified top left cell. If
only a sheet name is provided, the first set of non-empty cells in the top left corner of
the chosen worksheet will be selected automatically. As an alternative to specifying

SAS Transport “sasxport”

SPSS “spss”

SPSS Portable “spssport”

Stata (Version 7 Format) “stata”

Tableau Data Extract tde

Text / ASCII “text” Yes

TSP Portable “t”, “tsp”

wfsave—297

an explicit range, a name which has been defined inside the excel workbook to refer
to a range or cell may be used to specify the cells to read.

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

HTML Files

The base syntax for saving HTML files is:

wfsave(options) source_description [table_description]

where source_description is the path and name of the file to be saved, and where the follow-
ing table_description element may be employed:

• “byrow”, transpose the incoming data. This option allows you to read files where the
series are contained in rows (one row per series) rather than columns.

Text and Binary and Other Files

The base syntax for saving other files is:

wfsave(options) source_description

where source_description is the path and name of the file to be saved.

Examples
EViews Workfile Examples

wfsave new_wf

saves the current EViews workfile as “New_wf.WF1” in the default directory.

wfsave "c:\documents and settings\my data\consump"

saves the current workfile as “Consump.WF1” in the specified path.

wfsave macro @keep gdp unemp

saves the two series GDP and UNEMP in a separate workfile, “macro.WF1” in the default
directory.

wfsave macro @dropmap gdp*

saves all of the series in the current workfile, other than those that match the name pattern
“gdp*” in a workfile, “macro.WF1” in the default directory.

The command:

wfsave "<mydropboxdrive>"\folder\nipa.wf1"

will save the file to the cloud location MYDROPBOXDRIVE.

Foreign Data Examples

wfsave(type=excelxml, mode=update) macro.xlsx

298—Preliminary Updates to Command Reference

saves the current workfile page as a modern Excel “.XLSX” file.

wfsave(type=excelxml, mode=update) macro.xlsx range="Sheet2!a1"
byrow @keep gdp unemp

will save the two series GDP and UNEMP into the existing Excel file “macro.XLSX”, specify-
ing that the series should be written by row, starting in cell A1 on sheet Sheet2.

To save the latter file in a macro-enabled Excel 2007 file, you should specify the explicit file-
name extension “.XLSM”,

wfsave(type=excelxml, mode=update) macro.xlsm range="Sheet2!a1"
byrow @keep gdp unemp

Alternately,

wfsave(type=excelxml, noid) macro.xlsx range="Sheet2!a1"

will save the current workfile page as the Excel file “macro.XLSX” but will not include a col-
umn of dates.

If you wish to save a column of dates in a specific date format, you can do so by first creat-
ing an alpha series in the workfile with the specified format, then saving the file with the
“noid” option including that alpha series:

alpha mydates = @datestr(@date, "YYYY-MM-DD")

wfsave(type=excelxml, noid) macro.xlsm range="Sheet2!a1" @keep
mydates gdp unemp

will save the series GDP and UNEMP into the Excel file “macro.XLSM” along with a date
series with the format “YYYY-MM-DD”.

Cross-references

See Chapter 3. “Workfile Basics,” on page 41 of the User’s Guide I for a discussion of work-
files.

See also pagesave (p. 229), wfopen (p. 278), and pageload (p. 228).

Open a connection to an external application.

Syntax
xopen(options)

xopen is used to start a COM session with an external application, either R or MATLAB.
EViews can only have a single session open at a time; a session must be closed (see xopen
(p. 298)) before a new session can be opened.

xopen External Interface Commands

xopen—299

Options

Note that the MATLAB ProgIDs may be of particular interest as MATLAB (R2008a and later)
offers several distinct ways in which to connect to the server. The relevant ProgIDs are:

1. “MATLAB.Application”— this ProgID starts a command window version of MAT-
LAB that was most recently used as a server (might not be the latest installed ver-
sion of MATLAB).

2. “MATLAB.Application.Single”— same as (1) but starts a dedicated server so that
other programs looking to use MATLAB cannot connect to your instance.

3. “MATLAB.Autoserver”—starts a command window server using the most recent
version of MATLAB.

4. “MATLAB.Autoserver.Single”—same as (3) but starts a dedicated server.

5. “MATLAB.Desktop.Application”—starts the full desktop MATLAB as a server using
the most recent version of MATLAB.

Each ProgID may be amended to indicate a specific version of MATLAB. For example, using
the ProgID:

MATLAB.Desktop.Application.7.6

instructs EViews to use the full desktop MATLAB GUI for version R2008a (v7.6) as the Auto-
mation server.

Examples

xopen(type=m)

opens a connection to MATLAB.

type=arg Set the type of connection to be opened. arg may be “r” (R)
or “m” (MATLAB).

keepcurrent If “type=” is the same as a currently open connection,
keep original connection since it is already open.

progid=arg (optional) Set the version of MATLAB or statconnDCOM to
which EViews connects when opening a session. If not
specified, EViews will use the default ProgID specified in
the global options.

nolog Do not open a session log window.

case=arg Specify the default case for objects in R or MATLAB using
xput (p. 572). If “case=” is not provided, the default case
specified in the global options will be assumed. Note that
once a connection has been opened, the case option cannot
be changed; you may however, use the “name=” option
when using xput (p. 572) to provide an explicit name.

300—Preliminary Updates to Command Reference

xopen(type=r, case=lower)

opens a connection to R and sets the default name-case to lower.

xopen(type=m, progid=MATLAB.Desktop.Application.7.9)

opens a connection to MATLAB 7.9 running with the full desktop GUI.

Cross-references

See “EViews COM Automation Client Support (MATLAB, R, Python),” beginning on
page 179 for discussion. See also “External Program Interface” on page 959 of User’s Guide I
for global options setting.

See xclose (p. 565), xget (p. 565), xput (p. 572), xrun (p. 574), and xlog (p. 568).

Daily Seasonal Adjustment

Daily Seasonal Adjustment (DSA) models daily time series data that contains three distinct
seasonalities—a day-of-the-week (DoW) effect, a day-of-the-month (DoM) effect, and a day-
of-the-year (DoY) effect, as well as potential holiday or event/calendar effects.

EViews offers an implementation of the seasonal adjustment of daily time series algorithm
of Ollech (2021).

Background

Although the original Ollech (2021) algorithm is designed for 7-day week daily data, EViews’
implementation handles both 7 and 5-day week daily data.

7-day Seasonal Adjustment

The seasonal adjustment process of 7-day weekly data with DSA can be broken down into
five stages:

• Stage 1: Adjusting for the day-of-the-week effect using STL decomposition.

• Stage 2: Remove holiday and calendar effects using ARIMA modeling.

• Stage 3: Adjusting for the day-of-the-month effect using STL decomposition.

• Stage 4: Adjusting for the day-of-the-year effect using STL decomposition.

• Stage 5: Combining the adjustments and performing any out-of-sample forecasts.

Each of these stages may further be broken down into individual steps.

Stage 1: Day-of-the-week adjustment

The first stage adjusts for the DoW effect by performing STL decomposition on the original
data with a periodicity set to 7.

Stage 2: Holiday and calendar effects

The holiday and calendar effects are modeled using a seasonal ARIMA process. This can
both model the impact of known events, or detect and model unknown effects using outlier
detection.

Following Ollech (2021), EViews approximates the yearly seasonal ARIMA terms using trigo-
nometric functions composed of a series of sines and cosines as exogenous regressors in an
ARIMA model:

302—Daily Seasonal Adjustment

(0.1)

Where denotes the exogenous terms in an ARIMA, and is a indicator function
denoting the day of the year, i.e., cycles through . The optimal number of trigono-
metric terms, , is determine by information criteria. Note that this approximation assumes
that there are exactly 365 days in a year, which requires special handling of leap years.

The order of the ARIMA model can also be determined by information criteria.

The full set of steps in Stage 2 are:

a. Remove all February 29 (leap year) observations from the DoW adjusted data pro-
duced in Stage 1.

b. Determine the optimal order of an ARIMA model using information criteria on the
data created in step a), with an initial large set of trigonometric terms and any user-
specified holiday, calendar or other variables as exogenous variables.

c. Determine the optimal number of trigonometric terms using information criteria
based on an ARIMA model with fixed order, as determined in step b).

d. Having determined the optimal ARIMA order and number of trigonometric terms,
detect outliers in the ARIMA process using the time-series outlier detection method of
Chen and Liu (1993) (see below for details).

e. Estimate a final ARIMA model including effects for the detected outliers in step d) and
estimate fitted values to produce a series with calendar and holiday effects removed.

f. If forecasting is required, forecast from the ARIMA model over the forecasting period.

Stage 3: Day-of-the-month adjustment

This stage takes the final data from Stage 2 and performs an STL decomposition with a peri-
odicity of 31 to adjust for the DoM effect. This process requires that every month has exactly
31 days, and so for months with fewer than 31 days, interpolated values are inserted to
extend the month to 31. The steps in Stage 3 are then:

a. Expand the adjusted data from Stage 2 so that every month has 31 days.

b. Interpolate, with a cubic spline, the inserted observations in step a).

c. Perform STL with a 31 periodicity to produce DoM adjusted data.

d. Remove the inserted observations from step a).

Sˆ t b̂1 j,
2pjG t

365

 sin

 b̂2 j,
2pjG t

365

 cos

j 1

J

S G t
1 365, ,

J

Background—303

Stage 4: Day-of-the-year adjustment

The final seasonal adjustment performs an STL decomposition on the adjusted data from
Stage 3 with a periodicity of 365 to adjust for the DoY effect.

Stage 5: Combining and forecasting

The final stage brings together the results from the previous stages and performs any fore-
casting. The steps in this stage are:

a. Re-insert observations for February 29, and use a cubic spline to interpolate the
adjusted values from Stage 4.

b. Any holiday or event/calendar effects removed in Stage 2 are added back into the
adjusted data. This produces the final seasonally adjusted (and forecasted data).

c. The final trend estimate is produced by LOESS estimation of the final adjusted data
against a simple time trend.

d. The in-sample final seasonal factors are computed as the original data minus the
adjusted data.

e. To produce forecasts of the seasonal factors, a forecast of the original data is required.
This is computed from the ARIMA forecast in Stage 2(f), adjusted to add back the hol-
iday/calendar effects, and the day-of-the-week seasonal factors (which are themselves
forecasted using exponential smoothing, or by extending the last week of calculated
seasonal factors repeated throughout the forecast).

f. Individual DoW, DoM and DoY trends and factors can be retrieved from the corre-
sponding STL decompositions.

Outlier Detection

Stage 2 includes automatic outlier detection and correction in the ARIMA model based upon
the method given in Chen and Liu (1993). In this paper, four different types of outlier effects
are identified: Innovational Outlier (IO), Additive Outlier (AO), Level Shift (LS), and Tempo-
rary Change (TC).

For precise details of the procedure, we refer the reader to the original article, however as a
short outline, the procedure follows these steps:

a. Calculate residuals from an initial ARIMA estimation.

b. At each time period of the estimation sample, calculate standardized statistics for
each type of outlier effect.

c. If the maximum value of the statistics is greater than some critical value (cvalue),
remove the effect of that outlier from the residuals, and then re-calculate the statistics
in step b) using the adjusted residuals.

304—Daily Seasonal Adjustment

d. Iterate through step c) until no more outlier effects are detected at the critical value.

e. Re-estimate the ARIMA model, including outlier effects for the types and dates identi-
fied in step d) then return to step b).

f. Iterate through step e) until no new outliers are detected.

5-Day Adjustment

The original DSA algorithm is designed to handle data that are reported seven days (D7) a
week. However much economic data is only reported for five days (D5) of the week, with no
data available on weekends. Indeed, the application of DSA in Ollech (2021) uses five day
data, and expands out the data to seven day by repeating the Friday value for Saturday and
Sunday before performing DSA.

The implementation of DSA in EViews offers three alternatives for handling D5 data:

• Extend the D5 data to be D7 and use the Friday value as the value for Saturday/Sun-
day (as per Ollech (2021)).

• Extend the D5 data to be D7 using interpolation between Friday and Monday to fill in
Saturday/Sunday values.

• Perform DSA on the D5 data itself where the daily STL has a periodicity of 5, the
monthly STL has a periodicity of 23 and the yearly STL is 262. For months/years with
fewer than 23/262 observations, insert observations and interpolate the missing val-
ues.

Performing Daily Seasonal Adjustment in EViews

To perform DSA seasonal adjustment in EViews, open the series and select Proc/Seasonal
Adjustment/DSA Daily Seasonal Adjustment… EViews will then open a tree-structured
DSA dialog to allow you to set the options for the DSA procedure:

Performing Daily Seasonal Adjustment in EViews—305

The branches of the tree, on the left, allow you to specify the Basic Options, the ARIMA
model, and the three STL Seasonal Adjustment components. Click on the node name in the
left to select the node.

Basic Options

Within the Basic Options node:

• You may use the Forecast end edit field to specify the end of the forecast period. The
start of the forecast period will be the first observation after the current workfile sam-
ple.

If this field is blank, EViews will perform seasonal adjustment of the series over the
current workfile sample, and will not forecast beyond the sample.

If the field is filled the Day-of-week factor forecast options will be enabled, which
specify how the day of the week factor should be forecasted (using either exponential
smoothing, or simply extending the last week of data).

• The Output series names edit field may be used to specify the names of the output
series from the procedure. If this edit field is left blank, EViews will not output the
respective series.

If you workfile is structured as Daily 5-day week, the Five day week options drop-
down can be used to specify how EViews will treat weekends.

306—Daily Seasonal Adjustment

• Selecting Ignore weekends will perform DSA seasonal adjustment as though there are
262 days in each year and 23 days in each month (using interpolation to create obser-
vations for years/months with fewer days).

• Selecting either Expand weekends using Friday value or Expand weekends using
interpolation will convert the data to a Daily 7-day week format, and fill-in the week-
end values using either the value from the previous Friday, or will interpolate between
the Friday and the following Monday value.

ARIMA

The ARIMA node offers options for the ARIMA model estimated in Stage 2. The options are
provided in separate dialog nodes: Specification, Variables, Outliers.

ARIMA Specification

The Specification node controls the specification of the estimated ARIMA model:

The Model Specification radio button allows you to choose between whether to tell EViews
to use Automatic selection to determine the appropriate order of the ARIMA model, or
whether to use the Fixed model with user-specified order.

• The Max. difference, Max. AR and Max. MA dropdown menus specify the maximum
orders to test if performing automatic selection, or the specified order if a fixed model
is selected.

Performing Daily Seasonal Adjustment in EViews—307

• When performing automatic selection, the Criteria dropdown allows you to specify
the information criteria used to determine the most appropriate ARIMA number of
trigonometric terms.

ARIMA Variables

The variables node is used to specify exogenous regressors used in the ARIMA estimation.

• The Trig. seasonal terms section selects the number of trigonometric seasonal dum-
mies to include in the ARIMA estimation, as defined in Equation (0.1). You may select
whether to determine automatically the number of terms using an information crite-
rion, or you can fix the number at a specified value. Note the criterion employed for
selecting the number of seasonal terms is specified in the ARIMA specification tab
(“ARIMA Specification” on page 306).

• The User-supplied regressors box is used to enter any additional regressors you wish
to include in the ARIMA estimation. Typically, variables modeling holiday patterns are
used within the ARIMA estimation, and the built-in EViews function @holiday can
be used to create sophisticated holiday variables.

ARIMA Outliers

Options for automatic detection of outliers in the ARIMA model can be set on the Outliers
node.

308—Daily Seasonal Adjustment

The Outlier types check boxes select which types of outlier to detect and model in the
ARIMA, whereas the Parameters edit fields specify the parameters used during the detection
process. The Critical value field specifies the critical value used to determine whether an
observation contains an outlier, Delta is used in the specification of a Temporary change
outlier, and the two iterations fields are used to specify the maximum number of iterations
of the inner and outlier loops of the procedure.

Seasonal Adjustment

The three Seasonal Adjustment nodes specify options for the Day-of-week, Day-of-month,
and Day-of-year STL decompositions. The dialog for all three types is the same:

Example—309

The Perform day-of-week adjustment (or equivalent for the other month or year nodes)
specifies whether to include seasonal adjustment at this periodicity. The Polynomial
degree, Smoothing window, and Iteration control sections specify options for the STL pro-
cedure, see the STL section of UG1 for details.

The Output section allows you to save the outputs of the individual STL procedures as sep-
arate series. Select the desired output and then enter a name for the output series.

Example

As an example of using daily seasonal adjustment, we will work with a time-series contain-
ing daily electricity demand data for England and Wales between 2005 and 2014. The data
are contained in the workfile “Elecdmd.wf1”, which contains the single series ELECDMD.
The workfile extends until the end of 2015, leaving 20 months of NAs within the ELECDMD
series.

Viewing a graph of this series, we can see that there are strong seasonal patterns to these
data:

310—Daily Seasonal Adjustment

Not only does there appear to be a monthly pattern to electricity demand (with higher
demand in the winter, as electricity is used for heating), but, if we use the slider on the bot-
tom of the window to zoom in on a few months of data, we can see there is also a day of the
week pattern:

We will use the DSA tools to remove both the seasonal and the weekly patterns. We begin by
re-setting the workfile sample to begin and the workfile start and end on April 30, 2014 by
issuing the command (assuming “Month/Day/Year” data handling):

smpl @first 04/30/2014

Example—311

Next we open the ELECDMD series and click on Proc/Seasonal Adjustment/DSA Daily
Seasonal Adjustment to open the DSA dialog. EViews will specify a forecast end point of
December 31, 2015, which is the last date in our workfile. We keep this and the remaining
options in the dialog at their default values. Click OK to perform the adjustment.

Further, the output from the DSA will be displayed in a spool. The output is lengthy, con-
taining detailed information on each part of the adjustment process.

For example, the Day-of-Week STL displays a Trend-Seasonal-Adjusted graph for the Day-of-
Week seasonal adjustment,

312—Daily Seasonal Adjustment

while the Auto-ARMA Order node displays a graph of the ARMA selection criterion,

and the Outliers and ARIMA Estimates show information on the outlier identification pro-
cess, and the estimated ARIMA process:

120

140

160

180

200

220

II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Trend

-20

-15

-10

-5

0

5

10

II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Seas on

100

120

140

160

180

200

220

II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I II
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Adjus ted

0

1

2

3

0 1 2 3 4

p

Order Quality Ranking

q

Example—313

Lastly, the output series will be saved in the workfile, in the case, in the series ELECDMADJ.
The series will contain the DSA adjusted data, which when plotted against the original
ELECDMD for the whole sample shows the effect of removing the monthly seasonality,

and when looking at a smaller time-frame, the effects of removing within-week seasonality

314—Daily Seasonal Adjustment

References

Chen, C. and L.-M. Liu (1993) “Joint Estimation of Model Parameters and Outlier Effects in Time Series,”
Journal of the American Statistical Association, 88(421), 284–297.

Ollech, Daniel (2021) “Seasonal Adjustment of Daily Time Series,” Journal of Time Series Econometrics,
13(2), 235–264.

Linear and Nonlinear ARDL

Autoregressive Distributed Lag (ARDL) models, are linear time series models (Pesaran, 1998
and 2001) in which the dependent and independent variables are related contemporane-
ously and across historical (lagged) values.

EViews offers powerful time-saving tools for estimating and examining the properties of
Autoregressive Distributed Lag (ARDL) models. ARDLs are standard least squares regres-
sions that include lags of both the dependent variable and explanatory variables as regres-
sors (Greene, 2008). Although ARDL models have been used in econometrics for decades,
they have gained popularity in recent years as a method of examining cointegrating relation-
ships between variables through the work of Pesaran and Shin (PS 1998) and Pesaran, Shin
and Smith (PSS 2001).

While it is possible to use a standard least squares procedure to estimate an ARDL, the spe-
cialized ARDL estimator in EViews offers a number of useful features including model selec-
tion and the computation of post-estimation diagnostics.

Background

If is the dependent (autoregressive) variable, are distributed-lag explan-
atory variables, and are exogenous, potentially deterministic variables,
the Intertemporal Dynamics (ITD) representation of an ARDL() model is given
by:

(0.2)

where are the innovations, and , , and are the coefficients associated with the
exogenous variables, lags of , and lags of the distributed lag regressors ,
respectively.

Let be the usual lag operator and define the lag polynomials:

(0.3)

Substituting into Equation (0.2) yields:

yt x1 t, xk t,, , k
d1 t, dm t,, , m

p q1 qk, , ,

yt wjyt j–

j 1

p

 br j, xr t j–,

j 0

pr

r 1

k

 asds t,

s 1

m

 et

et as wj br j,
p yt pr k xr

L

w L 1 wjL
j

j 1

p

–

br L br j, Lj

j 0

pr

316—Linear and Nonlinear ARDL

(0.4)

Noting that any series may be written as and performing a Beveridge-
Nelson decomposition on both and the in Equation (0.4) produces the Condi-
tional Error Correction (CEC) representation of the ARDL,

(0.5)

which, with a bit of manipulation, may be rewritten as

(0.6)

where

(0.7)

and

w L yt br L xr t,

r 1

k

 asds t,

s 1

m

 et

zt zt zt 1– zt
w L br L

y t w 1 yt 1–– 1 L– w
˜

L yt br 1 xr t 1–,

r 1

k

br 1 b̃r L xr t,
r 1

k

 asds t,

s 1

m

 et

y t fyt 1–– lrxr t 1–,

r 1

k

 gj y t j–

j 1

p

 hr x r t,

r 1

k

dr j, x r t j–,

j 1

pr

r 1

k

 asds t,

s 1

m

 et

lr br 1 br j,

j 0

pr

dr m, br j,

j m 1

pr

–

b̃r L dr j, Lj

j 0

pr 1–

Background—317

(0.8)

Since CEC Equation (0.6) and Equation (0.9) are derived from ITD Equation (0.2), there is
an obvious one-to-one correspondence between the two. As with the vector error correction
(VEC) form of a VAR, the CEC form offers easy identification of a cointegrating relationship
between the dependent variable and the explanatory variables in the ARDL. We discuss this
parallel in greater depth in “Relationship to Vector Error Correction (VEC) Models,” on
page 318.

Rearrange terms, we may re-write Equation (0.9) as

(0.9)

If we define the equilibrium error correction term,

(0.10)

then Equation (0.9) may be written in Error Correction (EC) form:

(0.11)

where is the error correction parameter, and the long-term equilibrium parameters for the
explanatory variables are given by , for .

hj lj dj 0,

f w 1 wj

j 1

p

gm wj

j m 1

p

–

w̃ L gjL
j

j 0

p 1–

y t f yt 1–

lr

f
-----xr t 1–,

r 1

k

–

– gj y t j–

j 1

p

 hr x r t,

r 1

k

dr j, x r t j–,

j 1

pr

r 1

k

 asds t,

s 1

m

 et

ECt yt 1–

lr

f
-----xr t 1–,

r 1

k

–

y t fECt– gj y t j–

j 1

p

 hr x r t,

r 1

k

dr j, x r t j–,

j 1

pr

r 1

k

 asds t,

s 1

m

 et

f

lr f r 1 k, ,

318—Linear and Nonlinear ARDL

Conveniently, the coefficients in both the ITD and the CEC representations of the ARDL
model may be estimated via least squares.

Relationship to Vector Error Correction (VEC) Models

Assuming the same lag across the distributed-lag regressors and that the deterministics
 consist of a simple constant and linear trend, Pesaran (2001) demonstrates that the

ARDL CEC representation in Equation (0.9) is in fact the CEC of the VAR() model:

(0.12)

where

 is a vector of endogenous variables, and are the
vectors of intercept and trend coefficients, respectively, and

(0.13)

is the matrix lag polynomial.

Invoking the BN decomposition on and with following some rearrangement, the CEC
representation of this VEC may be written as

(0.14)

where

(0.15)

which is equivalent to Equation (0.6).

xr t,
dm t,

p
F L zt m– yt– ut

zt yt x1 t, xk t,, , , k 1 m y k 1

F L Ik 1 FjL
j

j 1

p

–

k 1

F L

z t F 1 – zt 1– F̃j z t j–

j 1

p 1–

 F 1 m iFj
j 1

p

y F 1 yt ut

rzt 1– F̃j z t j–

j 1

p 1–

 a0 a1t ut

F 1 Ik 1 Fj

j 1

p

–

r F 1 –

F̃m Fj

j m 1

p

–

a0 F 1 m iFj
j 1

p

y

a1 F 1 y

Background—319

Nonlinear (asymmetric) ARDL

The classical ARDL framework assumes that the long-run relationship is a symmetric
linear combination of regressors. While this is a natural starting assumption, it does not
match the behavioral finance and economics literature approach to modeling nonlinearity
and asymmetry (Kahneman, Tversky, and Shiller, 1979). In response, Shin (2014) proposes a
nonlinear ARDL (NARDL) framework in which short-run and long-run nonlinearities are
modeled as positive and negative partial sum decompositions of the explanatory variables.

Consider the partial sum decomposition of a variable as where
and are the partial sum processes of positive and negative changes in , respectively,
around a threshold of :

(0.16)

where is the initial value of .

The ITD representation of a NARDL() model is given by:

(0.17)

where are coefficients for the initial conditions, and where and are coeffi-
cients associated with the asymmetric distributed-lag variables.

We may an obtain a CEC representation of the ITD NARDL model,

(0.18)

where the are asymmetric analogues of the coefficients in
Equation (0.7).

We may rearrange terms so that Equation (0.18) becomes

ECt

zt zt z0 zt
+ zt

– zt
+

zt
– zt

z0

zt
+ max zs z0,()

s 1

t

zt
– min zs z0,()

s 1

t

z0 z

p q1 qk, , ,

yt wjyt j–

j 1

p

 br
0xr

0
br j,

+ xr t j–,
+

br j,
– xr t j–,

–
j 0

pr

r 1

k

 asds t,

s 1

m

 et

br
0

br j,
+

br j,
–

y t f– yt 1– lr
+xr t 1–,

+
lr
–xr t 1–,
–

r 1

k

gj y t j–

j 1

p 1–

hr
+ x r t,

+
hr
– x r t,

–
r 1

k

dr j,
+ x r t j–,

+
dr j,
– x r t j–,

–
j 1

pr 1–

r 1

k

 asds t,

s 1

m

 et

lr
+

lr
–

hr
+

hr
–

dr j,
+

dr j,
–, , , , ,

320—Linear and Nonlinear ARDL

(0.19)

Then, define the asymmetric equilibrium error correction term,

(0.20)

so that the CEC Equation (0.19) may be written in EC form:

(0.21)

where is the error correction parameter, the long-term equilibrium parameters for the
explanatory variables are given by and for . The short-run
parameters for the explanatory variables are given by the .

Notice that because the CEC representation decomposes the effect of the distribution lag
variables into short and long-run components, it allows for asymmetries in various combina-
tions of short and long-run dynamics. This flexibility does not exist in the ITD representa-
tion.

As with their symmetric counterparts, NARDL models may be estimated via least squares.
This result is appealing since nonlinear models often require iterative estimation routines.
Furthermore, bounds testing procedures (“Bounds Test View” on page 328) remain valid
and require no meaningful adjustments.

Estimating ARDL and NARDL in EViews

EViews provides an powerful interface for ARDL and NARDL estimation.

From the main EViews menu, click on Quick/Estimate Equation… or type the command
equation in the command line to open the equation dialog. Then select the ARDL -

y t f– yt 1–

lr
+

f
------xr t 1–,

+ lr
–

f
-----xr t 1–,

–

r 1

k

–

gj y t j–

j 1

p 1–

hr
+ x r t,

+
hr
– x r t,

–
r 1

k

dr j,
+ x r t j–,

+
dr j,
– x r t j–,

–
j 1

pr 1–

r 1

k

 asds t,

s 1

m

 et

ECAt yt 1–

lr
+

f
------xr t 1–,

+ lr
–

f
-----xr t 1–,

–

r 1

k

–

y t fECAt– gj y t j–

j 1

p 1–

 hr
+ x r t,

+
hr
– x r t,

–
r 1

k

dr j,
+ x r t j–,

+
dr j,
– x r t j–,

–
j 1

pr 1–

r 1

k

 asds t,

s 1

m

 et

f

lr
+

f lr
–

f r 1 k, ,
hr

+
hr
–

dr j,
+

dr j,
–, , ,

Estimating ARDL and NARDL in EViews—321

Autoregressive Distributed Lag Models (including NARDL) from the Method dropdown
to display the Specification tab of the ARDL dialog:

• In the first edit field under Linear dynamic specification, you should a enter a list of
variables consisting of the dependent variable followed by any symmetric ARDL dis-
tributed lag regressors. At a minimum, the edit field must contain the dependent vari-
able.

• Exogenous regressors, including deterministics, may be specified in the Fixed regres-
sors specifications section. Trend regressors corresponding to the five deterministic
cases discussed in “Bounds Test View” on page 328 (None, Restr. constant, Con-
stant, Restr. trend, Trend) may be specified using the Trend specification dropdown.
All other exogenous regressors (those apart from the constant and the trend) should
be specified in the Fixed regressors edit field.

• Asymmetric distributed lag regressors may be listed under Asymmetric dynamic
specifications. In particular, the Long-run and short-run edit field may be used to
specify regressors which are asymmetric in both the long-run and short-run. Regres-
sors which are asymmetric only in the long-run may be specified in the Long-run

322—Linear and Nonlinear ARDL

only edit field, while those which are asymmetric exclusively in the short-run are
specified in the Short-run only edit field.

• The Lag selection section specifies the lags for the dependent variable and the distrib-
uted lag regressors. By default, EViews uses automatic lag selection for both, follow-
ing the PSS(1999), the lag structure of a ARDL model is chosen optimally using
standard model selection criteria. You may use the Model Selection Criteria drop-
down menu on the Options page to select your criterion, choosing between using
Akaike (AIC), Schwarz (BIC), Hannan-Quinn (HQ), or the adjusted . Alternately,
you may select the radio button for Fixed to provide user-specified lags. Given your
choice of method, you may then use the dropdown menus to specify the actual Max
Lags or Lags to be used for the Dependent variable or the distributed lag Regressors.

For automatic lag selection, if and are the maximum number of lags of the
dependent and explanatory variables, and is the total number of distributed-lag
regressors, the total number of model evaluations is ; the number of combi-
nations of the set of numbers and additional numbers from . For
example, with 2 distributed-lag regressors and , the total number of con-
sidered models is 100.

When specifying the maximum number of lags, bear in mind that the ARDL model
selection process will use the same sample for each estimation so that observations
will be dropped from each candidate estimation based on the specified maximum.
Once the lags are chosen, the final estimation output will use all observations avail-
able for the selected model. Thus, the final estimates will generally employ more
observations than the model that was estimated during selection, and will be different
than the selection model results.

• Additionally, you can override the global lag specification for individual variables. You
may specify the lag for an individual variable using the “@fl(variable, lag)” syn-
tax. For instance, if the variable X should use 3 lags, irrespective of the fixed or auto-
matic lag settings, you may specify this by entering “@fl(x, 3)” in the regressor list.

• The Options tab of the estimation dialog allows you to specify the type of model
selection to be used if you chose automatic lag selection. You may choose between the
Akaike Information Criterion (AIC), Schwarz Criterion (SC), Hannan-Quinn Crite-
rion (HQ), or the Adjusted R-squared objective.

• You may also select the type of covariance matrix to use in the final estimates, using
the Coefficient covariance matrix dropdown. You may choose between Ordinary,
White, and HAC (Newey-West) covariance estimation, and specify whether or not to
perform a d.f. Adjustment. Note that these settings do not affect the model selection
criteria.

By default, linear ARDL estimation results are displayed using the IDT representation
Equation (0.2) while nonlinear ARDL estimates are displayed using the Conditional Error

R2

p q
k

p q 1 k

1 p, , k 0 q, ,
p q 4

Estimating ARDL and NARDL in EViews—323

Correction (CEC) form Equation (0.18). You may display the CEC and EC representations of
a linear model using the “Error Correction Output View” on page 325 as described below.

For example, in these linear ARDL results, note that the dependent variable LOG(REAL-
CONS) in the IDT representation is in levels,

Alternately for a nonlinear ARDL the CEC results are for a dependent variable in differences:

Dependent Variable: LOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 15:37
Sample (adjusted): 1951Q2 2000Q4
Included observations: 199 after adjustments
Dependent lags: 8 (Automatic)
Automatic-lag linear regressors (8 max. lags): LOG(REALGDP)
Static regressors: @EXPAND(@QUARTER, @DROPLAST)
Deterministics: Restricted constant and no trend (Case 2)
Model selection method: Akaike info criterion (AIC)
Number of models evaluated: 72
Selected model: ARDL(5,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) 0.854510 0.064428 13.26300 0.0000
LOG(REALCONS(-2)) 0.258776 0.082121 3.151153 0.0019
LOG(REALCONS(-3)) -0.156598 0.071521 -2.189542 0.0298
LOG(REALCONS(-4)) -0.194069 0.070465 -2.754106 0.0065
LOG(REALCONS(-5)) 0.169457 0.048486 3.494951 0.0006

LOG(REALGDP) 0.547615 0.048246 11.35042 0.0000
LOG(REALGDP(-1)) -0.475684 0.051091 -9.310547 0.0000

@QUARTER=1 -0.000348 0.001176 -0.295813 0.7677
@QUARTER=2 -0.000451 0.001165 -0.386775 0.6994
@QUARTER=3 0.000854 0.001171 0.729123 0.4668

C -0.058209 0.027842 -2.090705 0.0379

R-squared 0.999873 Mean dependent var 7.902158
Adjusted R-squared 0.999867 S.D. dependent var 0.502623
S.E. of regression 0.005805 Akaike info criterion -7.406420
Sum squared resid 0.006336 Schwarz criterion -7.224378
Log likelihood 747.9388 Hannan-Quinn criter. -7.332743
F-statistic 148407.0 Durbin-Watson stat 1.865392
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model
 selection.

324—Linear and Nonlinear ARDL

Note that the nonlinear results include entries for the special cumulative positive and nega-
tive difference transformations (@cumdp and @cumdn) of the nonlinear regressor LOG(REAL-
GOVT). For brevity, the initialization date for the @cumdp and @cumdn cumulative difference
functions is not displayed in the output. You may view this date using the full representation
of the equation by clicking on View/Representation from the estimated equation.

Views and Procs of ARDL

Since ARDL and NARDL models are estimated by simple least squares, all of the views and
procedures available to equation objects estimated by least squares are also available for
ARDL models. There there are a few ARDL specific issues, view, and procs that require addi-
tional discussion.

Model Selection Summary

The Model Selection Summary item on the View menu allows you to view either a Criteria
Graph or a Criteria Table. The graph shows the model selection value for the twenty “best”

Dependent Variable: DLOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 15:37
Sample (adjusted): 1950Q3 2000Q4
Included observations: 202 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Fixed-lag dual non-linear regressors: LOG(REALGOVT)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) -0.126939 0.037213 -3.411168 0.0008
LOG(REALGDP(-1)) 0.133061 0.040618 3.275890 0.0012

@CUMDP(LOG(REALGOVT(-1))) -0.004936 0.008563 -0.576444 0.5650
@CUMDN(LOG(REALGOVT(-1))) -0.018402 0.020006 -0.919856 0.3588

C -0.100803 0.063927 -1.576846 0.1165
DLOG(REALGDP) 0.643050 0.050018 12.85647 0.0000

@DCUMDP(LOG(REALGOVT)) -0.149865 0.042682 -3.511242 0.0006
@DCUMDN(LOG(REALGOVT)) -0.114135 0.103098 -1.107051 0.2696

R-squared 0.473136 Mean dependent var 0.008782
Adjusted R-squared 0.454125 S.D. dependent var 0.008864
S.E. of regression 0.006549 Akaike info criterion -7.180217
Sum squared resid 0.008320 Schwarz criterion -7.049196
Log likelihood 733.2019 Hannan-Quinn criter. -7.127206
F-statistic 24.88805 Durbin-Watson stat 2.584413
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model selection.

Views and Procs of ARDL—325

models. If you use either the Akaike Information Criterion (AIC), the Schwarz Criterion
(BIC), or the Hannan-Quinn (HQ) criterion, the graph will show the twenty models with the
lowest criterion value. If you choose the Adjusted R-squared as the model selection criteria,
the graph will show the twenty models with the highest Adjusted R-squared. The table form
of the view shows the log-likelihood value, the AIC, BIC and HQ values, and the Adjusted R-
squareds of the top twenty models in tabular form.

Error Correction Output View

The Conditional Error Correction (CEC) and Error Correction (EC) representations of the
ARDL specification (Equation (0.6) and Equation (0.11)) offer easy-to-visualize representa-
tions of the cointegrating relationship between the dependent variable and the explanatory
variables.

By default, linear ARDL estimation results are displayed using the IDT representation
Equation (0.2) while by default nonlinear ARDL estimates are displayed using the Condi-
tional Error Correction (CEC) and Error Correction (EC) form Equation (0.6).

The Error Correction Output view displays the estimation results in the error corrections
forms. Select View/ARDL Diagnostics/Error Correction Output from the menu of an esti-
mated ARDL equation. EViews displays a spool with two tables.

The first node in the spool corresponds to the Conditional Error Correction (CEC) representa-
tion (Equation (0.6) or Equation (0.18)) of the equation:

326—Linear and Nonlinear ARDL

The second node in the spool corresponds to results for the Error Correction (EC) represen-
tation of the equation (Equation (0.11) or Equation (0.21)), highlighting the speed of adjust-
ment to equilibrium in the cointegrating relationship. The results show the least squares
estimates for the equation which employs the equilibrium error correction term in place of
the individual cointegrating series:

Views and Procs of ARDL—327

Here, the error correction term given by Equation (0.10) and Equation (0.20) is
included among the regressors and is denoted as “COINTEQ”. The coefficient associated
with this regressor is the speed of adjustment to equilibrium in each period. If variables are
indeed cointegrated, we typically expect this coefficient to be negative and highly signifi-
cant.

Note that the name of the lag of the dependent variable and the COINTEQ term in these two
tables are always followed by a single asterisk, The single asterisk indicates that the p-value
associated with the variable is incompatible with the t-Bounds distribution in Theorem 3.2
in PSS(2001).

The names of other variables may be followed by a double asterisk. A double asterisk indi-
cates that the variable is a dynamic regressor with an optimal lag of zero so that EViews
does not include lags and differences of the variables in the specification.

Cointegrating Relation View

The Cointegrating Relation view displays information about the error correction term
representing the cointegrating relation. Select View/ARDL Diagnostics/Cointegrating Rela-
tion from the menu of an estimated ARDL equation to display a spool containing two tables
and a graph.

ECt

ECt

328—Linear and Nonlinear ARDL

• The Cointegrating Specification table shows the assumptions underlying the esti-
mate of the cointegrating relationship, and the equation specification for .

• The Cointegrating Coefficients table shows coefficient estimates for the underlying
variables inside the cointegrating relationship. These are the coefficients in
Equation (0.9) and the and coefficients in Equation (0.19).

• The Cointegrating Series graph displays the values of the for every observation
in the estimation sample.

Bounds Test View

The traditional cointegration tests of Engle (1987), Phillips (1990), or Johansen (1995)
require all variables in a VAR system to be . This requirement not only requires pre-
testing for the presence of unit roots in each of the endogenous variables, but is also subject
to misclassification.

In contrast, Pesaran (2001) proposes a test for cointegration that is robust to whether vari-
ables of interest are , , or mutually cointegrated. These bounds tests are formu-
lated as standard F-test or Wald tests of parameter significance in the cointegrating
relationship of the CEC model Equation (0.9),

ECt

lr f
lr

+
f lr

–
f

ECt

I 1

I 0 I 1

Views and Procs of ARDL—329

 (0.22)

Once the bounds test statistic is computed, the value is compared to two asymptotic critical
values corresponding to the polar cases of all variables being , or all variables being

. When the test statistic is below the lower critical value, we fail to reject the null and
conclude that cointegration is not possible. Alternately, when the test statistic is above the
upper critical value, we reject the null and conclude that cointegration is possible. In either
case, knowledge of the cointegrating rank is not necessary. If the statistic falls between the
lower and upper critical values, the test is inconclusive.

When the hypothesis in Equation (0.22) is rejected so that cointegration is possible, we pro-
ceed to perform a t-test of significance of the error correction parameter in
Equation (0.11). As in the case of Augmented Dickey-Fuller unit-root tests, critical values for
the test statistic are non-standard. If the null hypothesis of is not rejected, there is
no long run relationship. Alternatively, should we reject but be unable to reject the
sub-hypothesis , the cointegrating relationship is degenerate. Otherwise,
cointegration exists.

When deterministics contribute to the error correction term, they are implicitly projected
onto the span of the cointegrating vector. If the ARDL model in Equation (0.2) includes a
constant and a trend, say and , the constants and trend coefficients must
respect the restrictions implied by the expressions for and . These restrictions trans-
late into slight modifications of the null and alternative hypotheses in Equation (0.22).

We may outline five alternate specifications of the CEC model that are distinguished by
whether deterministic terms are included into the error correction term (Pesaran, 2001). The
five cases, which closely follow VEC literature (Johansen, 1995), are summarized as follows:

• Case 1 – No constant, no trend: and which implies that .
There is no change to the Equation (0.22) bounds test hypothesis.

• Case 2 – Restricted constant and no trend: and , so the restrictions
 and are assumed to hold:

 (0.23)

• Case 3 – Unrestricted constant and no trend: and , and the restrictions
 and are assumed to hold. There is no change to the Equation (0.22)

bounds test hypothesis.

• Case 4 – Unrestricted constant and restricted trend: and , and the restric-
tions and are assumed hold:

H0: f l1 lk,, 0

H1: f l1 lk,, 0

I 0
I 1

f

f 0
f 0

l1 lk, 0

d0 c d1 t
a0 a1

m y 0 a0 a1 0

m 0 y 0
a0 F 1 m a1 0

H0: f l1 lk a0, ,, 0

H1: f l1 lk a0, ,, 0

m 0 y 0
a0 0 a1 0

m 0 y 0
a0 0 a1 F 1 y

330—Linear and Nonlinear ARDL

(0.24)

• Case 5 – Unrestricted constant and unrestricted trend: and and the
restrictions and are assumed hold. There is no change to the
Equation (0.22) bounds test hypothesis.

To perform the bounds test, click on View/ARDL Diagnostics/Bounds Test. The results are
presented in a spool. Below the table of long run coefficient estimates are two additional
tables, respectively titled as the -Bounds Test and the -Bounds Test.

These tables respectively display the - and - statistics along with their associated I(0)
(lower) and I(1) (upper) critical value bounds for the null hypotheses of no levels relation-
ship between the dependent variable and the regressors in the CEC model. The critical val-
ues are provided for significance levels 10%, 5%, 2.5%, and 1%, respectively. The -
Bounds test in particular is a parameter significance test on the lagged value of the depen-
dent variable. Since the distribution of this test is non-standard, the -value provided in the
regression output of the CEC regression is not compatible with this distribution, although
the -statistic is valid. Accordingly, any inference must be conducted using the -Bounds
test critical values provided.

We also mention here that the - critical value tables now present the critical values com-
puted under an asymptotic regime (sample size equal to 1000) and referenced from
PSS(2001), in addition to providing critical values for finite sample regimes (sample sizes
running from 30 to 80 in increments of 5) and referenced from Narayan (2005).

H0: f l1 lk a1, ,, 0

H1: f l1 lk a1, ,, 0

m 0 y 0
a0 0 a1 0

F t

F t

t

p

t t

F

Views and Procs of ARDL—331

Symmetry Test View

Recall that the NARDL CEC representation in Equation (0.21) is quite general and can
accommodate asymmetries in different combinations of short and long-run dynamics. In
particular, consider the following two sets of symmetry restrictions:

1. Long-run Symmetry: Restricts for all so that the CEC
reduces to

(0.25)

2. Short-run Symmetry: Restricts and for
 and , so the CEC reduces to

(0.26)

Imposing either set of restrictions leads to one of the previous two representations. Imposing
both restrictions reduces the NARDL CEC representation to the classical ARDL CEC repre-
sentation in Equation (0.9)

And of course, it is possible to generate even more complex dynamics by imposing symme-
try on other subsets of the long-run and short run regressors.

Naturally, one can test for symmetry formally by performing the usual t-test or F-test of
parameter equality. For example, testing for symmetry for a specific long-run (LR) variable,
say , is equivalent to the following hypothesis:

To (0.27)

lr
+

lr
–

lr r 1 k, ,

y t f– yt 1–

lr

f
----- xr t 1–,

+ xr t 1–,
–

r 1

k

–

gj y t j–

j 1

p 1–

hr
+ x r t,

+
hr
– x r t,

–
r 1

k

dr j,
+ x r t j–,

+
dr j,
– x r t j–,

–
j 1

pr 1–

r 1

k

 asds t,

s 1

m

 et

hr
+

hr
–

hr dr j,
+

dr j,
–

dr j,
r 1 k, , j 1 pr 1–, ,

y t f– yt 1–

lr
+

f
------xr t 1–,

+ lr
–

f
-----xr t 1–,

–

r 1

k

–

gj y t j–

j 1

p 1–

hr x r t,
+ x r t,

–
r 1

k

dr j, x r t j–,
+ x r t j–,

–
j 1

pr 1–

r 1

k

 asds t,

s 1

m

 et

xj

H0: lj
+

lj
–

H1: lj
+

lj
–

332—Linear and Nonlinear ARDL

To perform the symmetry test, select View/ARDL Diagnostics/Symmetry Test from the
menu of a nonlinear asymmetric NARDL equation:

Dynamic Multipliers View

Dynamic multipliers (DM) are a familiar concept which measures the marginal contribution
of an explanatory variable to the dependent variable. A natural extension of the concept for
time series analysis is the idea of cumulative dynamic multipliers (CDM). This is the cumu-
lative sum of dynamic multipliers at each point in time, starting with a point in time and
running through for horizon length .

For standard ARDLS, CDMs are defined for each long-run distributed-lag variable as the par-
tial derivatives:

(0.28)

for .

For NARDL models, CDMs are derived for each long-run asymmetric distributed-lag vari-
ables:

(0.29)

t
t h h 0

mr t, h
yt s

xr t h,

s 0

h

r 1 k, ,

mr t,
+ h

yt s

xr t s,
+

s 0

h

mr t,
– h

yt s

xr t s,
–

s 0

h

Views and Procs of ARDL—333

By construction, as , in traditional models, while
 and in asymmetric models. In the latter setting, we

can employ the absolute difference between the two different CDMs, ,
as a measure of asymmetric or nonlinearity.

To display cumulative dynamic multiplier graphs for each of the explanatory variables, click
on View/ARDL Diagnostics/Dynamic Multiplier Graph... EViews will open a dialog con-
taining display and computation settings:

• You may enter the horizon length (number of periods to compute the multipliers)
in the Horizon edit field.

• For NARDL models, you will be offered the opportunity to display confidence inter-
vals for the computed absolute difference between the positive and negative compo-
nents for a given regressor. CIs are not available for linear ARDL specifications.

You may check the Show CI to display the CIs, and Shade CI band to display the CIs
as bands instead of lines. The Level edit field controls the size of the CI, and the Rep-
lications governs how many replications to use in resampling for computing the CI.

Click on OK to continue. EViews will open a spool view, with each node in the spool con-
taining the CDM graph corresponding to one of the explanatory variables.

For symmetric linear models, each graph contains a CDM along with a dashed horizontal
line denoting the long-run value.

h mr t, h lr f
mr t,

+ h lr
+

f mr t,
– h lr

–
f

mr t,
+ h mr t,

– h –

h

334—Linear and Nonlinear ARDL

For asymmetric nonlinear models, each graph will show the positive and negative responses
and limit values, along with a line showing the absolute value of the difference between the
two, and if requested, a CI for the absolute difference:

Examples—335

ARDL Equation Procs

Make Regressor Group Proc

Make Cointegrating Relationship Proc

Examples

We demonstrate ARDL and NARDL estimation using a dataset from Greene (2008, page
685). This dataset consists of a number of quarterly US macroeconomic variables between
1950 and 2000. The data are in the workfile “Ardl13.WF1”

Example 1: Symmetric ARDL (Automatic Lag Selection)

We start with a classical (symmetric) ARDL model using the log of real consumption as the
dependent variable, and the log of real GDP as a single regressor (along with a constant).
Bring up the estimation dialog and enter

log(realcons) log(realgdp)

into the Linear dynamic specification edit field and select Automatic selection with a max-
imum of 8 lags (two years) for both the dependent variable and dynamic regressors.

336—Linear and Nonlinear ARDL

We include a full set of quarterly dummies as fixed regressors. In particular, add a restricted
constant to the cointegrating relationship, and the remaining quarterly dummies to the
short-run regressors. Include the long-run constant by choosing Rest. Constant in the Trend
specification dropdown menu, and enter

@expand(@quarter, @droplast)

into the Fixed regressors edit field to add the remaining dummy variables.

We do not make changes in the Options tab, leaving all settings at their default value. The
estimation results for this specification are shown below:

Examples—337

The first part of the output gives a summary of the settings used during estimation. Here we
see that lags were determined using automatic selection (Akaike Information Criterion) with
a maximum of 8 lags of both the dependent variable and the regressor. Out of the 72 models
evaluated, the automatic selection procedure yielded an ARDL(5,1) model—5 lags of the
dependent variable LOG(REALCONS), and a single lag (along with the level value) of the
regressor LOG(REALGDP).

The rest of the output is standard least squares output for the selected model. Note that each
of the regressors (with the exception of the quarterly dummies) is statistically significant,
and that the coefficient on the one period lag of the dependent variable, LOG(REALCONS),
is quite high, at 0.85.

Dependent Variable: LOG(REALCONS)
Method: ARDL
Date: 05/03/22 Time: 09:43
Sample (adjusted): 1951Q2 2000Q4
Included observations: 199 after adjustments
Dependent lags: 8 (Automatic)
Automatic-lag linear regressors (8 max. lags): LOG(REALGDP)
Static regressors: @EXPAND(@QUARTER, @DROPLAST)
Deterministics: Restricted constant and no trend (Case 2)
Model selection method: Akaike info criterion (AIC)
Number of models evaluated: 72
Selected model: ARDL(5,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) 0.854510 0.064428 13.26300 0.0000
LOG(REALCONS(-2)) 0.258776 0.082121 3.151153 0.0019
LOG(REALCONS(-3)) -0.156598 0.071521 -2.189542 0.0298
LOG(REALCONS(-4)) -0.194069 0.070465 -2.754106 0.0065
LOG(REALCONS(-5)) 0.169457 0.048486 3.494951 0.0006

LOG(REALGDP) 0.547615 0.048246 11.35042 0.0000
LOG(REALGDP(-1)) -0.475684 0.051091 -9.310547 0.0000

@QUARTER=1 -0.000348 0.001176 -0.295813 0.7677
@QUARTER=2 -0.000451 0.001165 -0.386775 0.6994
@QUARTER=3 0.000854 0.001171 0.729123 0.4668

C -0.058209 0.027842 -2.090705 0.0379

R-squared 0.999873 Mean dependent var 7.902158
Adjusted R-squared 0.999867 S.D. dependent var 0.502623
S.E. of regression 0.005805 Akaike info criterion -7.406420
Sum squared resid 0.006336 Schwarz criterion -7.224378
Log likelihood 747.9388 Hannan-Quinn criter. -7.332743
F-statistic 148407.0 Durbin-Watson stat 1.865392
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model
 selection.

338—Linear and Nonlinear ARDL

To view the performance of the selected model against the alternatives, we click on \View/
Model Selection Summary/Criteria Graph to view a graph of the AIC of the top twenty
models:

The selected ARDL(5,1) model was only slightly better than an ARDL(5,2) model, which
was in turn only slightly better than an ARDL(5,3). Note that the top three models all
employ five lags of the dependent variable.

Click on the Name button on the equation toolbar and name the equation EX1.

Example 2: Symmetric ARDL(3,3)

Instead of using automatic selection to choose the best model, Greene (Example 20.4) ana-
lyzes these data with a fixed ARDL(3,3) model. We can estimate this specification by click-
ing on Object/Copy on the EX1 toolbar to make a copy of the existing equation, name the
equation EX2, then pressing the Estimate button to bring up the estimation dialog. Next,
change the number of lags on both dependent and regressors to “3”, and then select the
Fixed radio button to switch off automatic lag selection:

Examples—339

Click on OK to estimate the equation using these settings.

The results of this estimation are given by:

340—Linear and Nonlinear ARDL

For this specification, the one-period lag on the dependent variable remains high, at 0.72,
and again all coefficients are statistically significant (with the exception of the period dum-
mies).

We may examine the CEC and EC forms of the estimates by selecting View/ARDL Diagnos-
tics/Error Correction Results. EViews will display long-run output in the form of a spool
with two tables showing the Conditional Error Correction regression results, and the Error
Correction results. The first table displays the estimation results in the CEC form:

Dependent Variable: LOG(REALCONS)
Method: ARDL
Date: 05/03/22 Time: 09:43
Sample (adjusted): 1950Q4 2000Q4
Included observations: 201 after adjustments
Max. dependent lags: 3 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Static regressors: @EXPAND(@QUARTER, @DROPLAST)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(3,3)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) 0.723341 0.069767 10.36794 0.0000
LOG(REALCONS(-2)) 0.391367 0.079618 4.915576 0.0000
LOG(REALCONS(-3)) -0.233653 0.068672 -3.402444 0.0008

LOG(REALGDP) 0.565088 0.051953 10.87699 0.0000
LOG(REALGDP(-1)) -0.390884 0.083934 -4.657023 0.0000
LOG(REALGDP(-2)) -0.237950 0.086882 -2.738778 0.0068
LOG(REALGDP(-3)) 0.190243 0.058922 3.228753 0.0015

@QUARTER=1 -0.000259 0.001266 -0.204677 0.8380
@QUARTER=2 -0.000259 0.001259 -0.205412 0.8375
@QUARTER=3 0.000915 0.001256 0.728608 0.4671

C -0.109962 0.029236 -3.761208 0.0002

R-squared 0.999855 Mean dependent var 7.893303
Adjusted R-squared 0.999847 S.D. dependent var 0.507884
S.E. of regression 0.006274 Akaike info criterion -7.251681
Sum squared resid 0.007479 Schwarz criterion -7.070903
Log likelihood 739.7939 Hannan-Quinn criter. -7.178530
F-statistic 131047.1 Durbin-Watson stat 1.785975
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model
 selection.

Examples—341

The EC results, which are displayed click on the Error Correction node, show that the speed
of adjustment coefficient is negative (-11.89) and statistically significant.

342—Linear and Nonlinear ARDL

Clicking on View/ARDL Diagnostics/Cointegrating Relations shows the specification and
coefficient results for the cointegrating relationship:

Examples—343

The equilibrium coefficients show that the impact of a change in LOG(REALGDP) on
LOG(REALCONS) is close to unity. Moreover, since the specification restricts the constant to
the long-run, it shows up as part of the cointegrating equation.

Example 3: Symmetric ARDL(1,1)

As a final symmetric ARDL example, we will consider Greene's Example 20.5 which esti-
mates an ARDL(1,1) model. Copy the EX2 ARDL equation object, name the copy EX3, bring
up the estimation dialog by clicking on the Estimate button and change the number of lags
to “1” for both dependent and regressors, remove the quarterly dummies, and then click on
OK to estimate with the new specification:

344—Linear and Nonlinear ARDL

The results obtained from estimating this specification are given by:

Examples—345

Following estimation, we may perform bounds test for cointegration by clicking on View/
ARDL Diagnostics/Bounds Test to bring up the cointegrating relationship view

Dependent Variable: LOG(REALCONS)
Method: ARDL
Date: 05/03/22 Time: 09:47
Sample (adjusted): 1950Q2 2000Q4
Included observations: 203 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) 0.904584 0.030589 29.57234 0.0000
LOG(REALGDP) 0.584210 0.051411 11.36351 0.0000

LOG(REALGDP(-1)) -0.483037 0.052177 -9.257657 0.0000
C -0.085331 0.029285 -2.913823 0.0040

R-squared 0.999820 Mean dependent var 7.884560
Adjusted R-squared 0.999817 S.D. dependent var 0.512951
S.E. of regression 0.006940 Akaike info criterion -7.083459
Sum squared resid 0.009585 Schwarz criterion -7.018175
Log likelihood 722.9711 Hannan-Quinn criter. -7.057048
F-statistic 367753.8 Durbin-Watson stat 2.493836
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model
 selection.

346—Linear and Nonlinear ARDL

The bounds statistic value is 17.25. We compare this result to the critical values listed in the
second table. Clearly the statistic is larger than the I(1) critical value at all significance levels
so that we may reject the null hypothesis of no levels relationship and conclude that
LOG(REALGDP) and LOG(REALCONS) are cointegrated.

We may also evaluate the cumulative dynamic multiplier of the explanatory variable
LOG(REALGDP) on LOG(REALCONS). Click on View/ARDL Diagnostics/Dynamic Multi-
plier Graph... to bring up the dynamic multiplier dialog:

Note that confidence interval settings are not available since we have estimated a purely
symmetric ARDL models. Enter “30” as the horizon length and click on OK.

Examples—347

EViews will display a spool object with a dynamic multiplier graph for each distributed lag
variable:

Here we see that LOG(REALGDP) approaches its long-run value of 1.06 as the horizon
length increases. Moreover, it does so at a diminishing pace.

Example 4: Asymmetric ARDL(1,1,1)

Here we will continue from the previous example, but consider the NARDL(1,1,1) model of
LOG(REALCONS) on LOG(REALGDP) and LOG(REALGOVT). We will treat LOG(REAL-
GOVT) as an asymmetric variable which is asymmetric in both the short-run and the long-
run.

To estimate this model, copy the EX3 equation, name the copy EX4, then bring up the esti-
mation dialog by clicking on the Estimate button. Next, add an Asymmetric dynamic spec-
ification group by entering “LOG(REAGOVT)” in the Long-run and short-run asymmetry
edit field,

348—Linear and Nonlinear ARDL

and click on OK to estimate the new specification.

Examples—349

Notice that the LOG(REALGOVT) is now split into four variables corresponding to the posi-
tive and negative cumulative sums and cumulative difference sums using the labels
“@CUMDP(LOG(REALGOVT(-1))” and “@CUMDN(LOG(REALGOVT(-1))” for the long-
term effects, and the labels “@DCUMDP(LOG(REALGOVT))” and “@DCUMDN(LOG(REAL-
GOVT))” for the short-term effects.

It is extremely important to note that in contrast to purely symmetric ARDL models which
display the ITD representation Equation (0.2) results as the default output (with an option
to display the results for the CEC equation Equation (0.9) using the Conditional Error Cor-
rection (Long Run) Form view), the default output for asymmetric NARDL models shows
the CEC equation Equation (0.19) representation. This difference in the default display is
due to the need to support NARDL partial asymmetry models which may only be specified
in the context of a CEC model.

We may also test whether the asymmetric assumptions for LOG(REALGOVT) are valid by
testing for symmetry. Click on View/ARDL Diagnostics/Symmetry Test to conduct the test:

Dependent Variable: DLOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 15:37
Sample (adjusted): 1950Q3 2000Q4
Included observations: 202 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Fixed-lag dual non-linear regressors: LOG(REALGOVT)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) -0.126939 0.037213 -3.411168 0.0008
LOG(REALGDP(-1)) 0.133061 0.040618 3.275890 0.0012

@CUMDP(LOG(REALGOVT(-1))) -0.004936 0.008563 -0.576444 0.5650
@CUMDN(LOG(REALGOVT(-1))) -0.018402 0.020006 -0.919856 0.3588

C -0.100803 0.063927 -1.576846 0.1165
DLOG(REALGDP) 0.643050 0.050018 12.85647 0.0000

@DCUMDP(LOG(REALGOVT)) -0.149865 0.042682 -3.511242 0.0006
@DCUMDN(LOG(REALGOVT)) -0.114135 0.103098 -1.107051 0.2696

R-squared 0.473136 Mean dependent var 0.008782
Adjusted R-squared 0.454125 S.D. dependent var 0.008864
S.E. of regression 0.006549 Akaike info criterion -7.180217
Sum squared resid 0.008320 Schwarz criterion -7.049196
Log likelihood 733.2019 Hannan-Quinn criter. -7.127206
F-statistic 24.88805 Durbin-Watson stat 2.584413
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model selection.

350—Linear and Nonlinear ARDL

EViews displays a table of test results for long-run and short-run restrictions. In this case, we
do not reject the null hypothesis of dual asymmetry against the long-run or short-run partial
asymmetric alternative.

We may also display the cumulative dynamic multiplier curves. Click on View/ARDL Diag-
nostics/Dynamic Multiplier Graph...} to bring up the dynamic multiplier dialog:

Note that confidence interval settings are now available in the dialog for our asymmetric
NARDL model since dynamic multiplier CIs are derived for the absolute difference in paths
resulting from the positive and negative asymmetric components of a given regressor. You
may check the Show CI to display the CIs, and Shade CI band to display the CIs as bands
instead of lines. The Level edit field controls the size of the CI, and the Replications governs
how many replications to use in resampling for computing the CI.

To proceed with our example, enter “30” as the horizon length and leave everything at else
at the default values. Click on OK to continue.

Coefficient symmetry tests
Null hypothesis: Coefficient is symmetric
Degrees of freedom: F(1,194), Chi-square(1)
Equation: EX4

Variable Statistic Value Probability

Long-run

LOG(REALGOVT) F-statistic 0.525997 0.4692
 Chi-square 0.525997 0.4683

Short-run

LOG(REALGOVT) F-statistic 0.077094 0.7816
 Chi-square 0.077094 0.7813

Examples—351

The results are displayed in a spool, with one graph for each of the distributed lag explana-
tory variables. The first node shows the CDM for LOG(REALGDP) on the dependent variable
LOG(REALCONS).

Notice that the path approaches the long-run value, which is indicated by dashed horizontal
line. Since LOG(REALGDP) is symmetric, there is no CI around the CDM.

The second node shows the CDM graph for the asymmetric variable LOG(REALGOVT):

352—Linear and Nonlinear ARDL

Since LOG(REALGOVT) is asymmetric in both the long-run and short-run, we expect the
dynamic multiplier curves to differ in both the long-run and short-run. This relationship is
seen in the fact that the absolute difference between these paths (the top line with shaded CI
interval) never approaches zero. The remaining lines display the CDMs for the positive and
negative values, which as expected, approach their long-run values.

Example 5: Asymmetric ARDL(1,1,1,1)

Continuing with the previous example, we add a partially symmetric variable to the list of
distributed-lag regressors. We treat real investments (REALINVS) as a variable which is
asymmetric in the long-run, but symmetric in the short run. Make a copy of EX4, name the
copy EX5, then bring up the estimation dialog by clicking on the Estimate button. Enter
“LOG(REALINVS)” in the Long-run asymmetry only edit field, and click on OK to estimate
the updated specification.

The results of this estimation are:

Examples—353

Observe now that LOG(REALINVS) is split into its positive and negative cumulative sums in
the long-run labeled “@CUMDP(LOG(REALINVS(-1))” and “@CUMDN(LOG(REALINVS(-
1))”, and the short-run symmetric effect labeled “@DLOG(REALINVS)”. In contrast,
LOG(REALGOVT) is asymmetric in both the long-run and short-run,

We can further study the long-run relationship by clicking on Views/ARDL Diagnostics/
Error Correction Results to display the CEC and EC representations,

Dependent Variable: DLOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 13:23
Sample (adjusted): 1950Q3 2000Q4
Included observations: 202 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Fixed-lag dual non-linear regressors: LOG(REALGOVT)
Fixed-lag long-run non-linear regressors: LOG(REALINVS)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) -0.067376 0.029370 -2.294022 0.0229
LOG(REALGDP(-1)) 0.064146 0.038956 1.646639 0.1013

@CUMDP(LOG(REALGOVT(-1))) -0.010560 0.007600 -1.389487 0.1663
@CUMDN(LOG(REALGOVT(-1))) 0.007045 0.013878 0.507646 0.6123
@CUMDP(LOG(REALINVS(-1))) 0.002484 0.006468 0.384024 0.7014
@CUMDN(LOG(REALINVS(-1))) -0.006293 0.005391 -1.167234 0.2446

C -0.002373 0.119394 -0.019879 0.9842
DLOG(REALGDP) 1.399515 0.056668 24.69679 0.0000
DLOG(REALINVS) -0.187990 0.011299 -16.63751 0.0000

@DCUMDP(LOG(REALGOVT)) -0.340204 0.029382 -11.57868 0.0000
@DCUMDN(LOG(REALGOVT)) -0.202562 0.065446 -3.095100 0.0023

R-squared 0.794035 Mean dependent var 0.008782
Adjusted R-squared 0.783252 S.D. dependent var 0.008864
S.E. of regression 0.004127 Akaike info criterion -8.089752
Sum squared resid 0.003253 Schwarz criterion -7.909599
Log likelihood 828.0650 Hannan-Quinn criter. -8.016862
F-statistic 73.63435 Durbin-Watson stat 1.907457
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model selection.

354—Linear and Nonlinear ARDL

and by clicking on Views/ARDL Diagnostics/Cointegrating Relation to display the equilib-
rium relationship,

Examples—355

We see here that both LOG(REALGOVT) and LOG(REALINVS) enter the cointegrating rela-
tionship asymmetrically, while LOG(REALGDP) enters symmetrically.

Notice also the full expression for the error correction relationship in the Cointegrating
Specification table. It is worth pointing out that the expression uses “@CUMDP” and
“@CUMDN” functions that contain the series of interest and an initialization date. This is
the actual, working specification for these expressions required for evaluation. For brevity,
the initialization argument does not appear in the labels used in the Cointegrating Coeffi-
cients table results.

We can also conduct a symmetry test by selecting the ARDL Diagnostics/Symmetry Test
menu item:

356—Linear and Nonlinear ARDL

Since LOG(REALGOVT) is a fully asymmetric variable, it is tested for symmetry along both
the long-run and short-run dimensions, while LOG(REALINVS) is estimated and tested only
in the long-run dimension. We fail to reject symmetry for LOG(REALGOVT) at conventional
significance levels in both the long-run and short-run but reject the null of LOG(REALINVS)
long-run symmetry at conventional sizes.

To display the dynamic multiplier curves we again click on View/ARDL Diagnostics/
Dynamic Multiplier Graph... to bring up the dynamic multiplier dialog:

Coefficient symmetry tests
Null hypothesis: Coefficient is symmetric
Degrees of freedom (simple tests): F(1,191), Chi-square(1)
Degrees of freedom (joint tests): F(2,191), Chi-square(2)
Equation: EX5

Variable Statistic Value Probability

Long-run

LOG(REALGOVT) F-statistic 2.061889 0.1527
 Chi-square 2.061889 0.1510

LOG(REALINVS) F-statistic 7.855393 0.0056
 Chi-square 7.855393 0.0051

Short-run

LOG(REALGOVT) F-statistic 2.821345 0.0947
 Chi-square 2.821345 0.0930

Joint (Long-Run and Short-Run)

LOG(REALGOVT) F-statistic 1.682327 0.1887
 Chi-square 3.364654 0.1859

Examples—357

Here we will generate the curves for 30 periods without displaying confidence intervals. As
before, enter “30” as the horizon length, deselect the Show CI checkbox and click on OK to
proceed. EViews will display a spool containing CDM graphs for each of the explanatory
variables. Of particular interest here is the final curve associated with LOG(REALINVS):

Recall that the LOG(REALINVS) is asymmetric in the long-run, but is symmetric in the
short-run. This dynamic behavior is clearly seen by noting the topmost absolute asymmetry
curve starts off at zero, then diverges in the long-run.

Example 6: Asymmetric ARDL(1,1,1,1,1)

Next, we add a partially symmetric variable to the list of distributed-lag regressors. In partic-
ular, we will treat the log of the t-bill rate, LOG(TBILRATE), as a variable which is asymmet-
ric in the short-run, but symmetric in the long-run. Copy EX5, name the copy EX6, then
bring up the estimation dialog by clicking on the Estimate button. Enter “LOG(TBILRATE)”
in the Short-run asymmetry only edit field, then click on OK to estimate the updated equa-
tion. EViews displays the CEC results:

358—Linear and Nonlinear ARDL

LOG(TBILRATE) appears as a symmetric long-run variable through the variable labeled
“LOG(TBILRATE(-1))”, and asymmetrically in the short-run through the variables labeled
“@DCUMDP(LOG(TBILRATE))” and @DCUMDN(LOG(TBILARATE))”.

Lastly, we display the dynamic multipliers for this specification. Click on View/ARDL Diag-
nostics/Dynamic Multiplier Graph... to bring up the dynamic multiplier dialog. As before,
enter “30” as the horizon length and deselect the Show CI checkbox. Click on OK to con-
tinue:

Dependent Variable: DLOG(REALCONS)
Method: ARDL
Date: 05/04/22 Time: 14:45
Sample (adjusted): 1950Q3 2000Q4
Included observations: 202 after adjustments
Max. dependent lags: 1 (Fixed)
Fixed-lag linear regressors: LOG(REALGDP)
Fixed-lag dual non-linear regressors: LOG(REALGOVT)
Fixed-lag long-run non-linear regressors: LOG(REALINVS)
Fixed-lag short-run non-linear regressors: LOG(TBILRATE)
Deterministics: Restricted constant and no trend (Case 2)
Selected model: ARDL(1,1,1,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*

LOG(REALCONS(-1)) -0.078875 0.030258 -2.606767 0.0099
LOG(REALGDP(-1)) 0.077333 0.039794 1.943360 0.0535
LOG(TBILRATE(-1)) -0.001179 0.000782 -1.506623 0.1336

@CUMDP(LOG(REALGOVT(-1))) -0.011931 0.007672 -1.555101 0.1216
@CUMDN(LOG(REALGOVT(-1))) -0.001311 0.015198 -0.086232 0.9314
@CUMDP(LOG(REALINVS(-1))) 0.002184 0.006571 0.332425 0.7399
@CUMDN(LOG(REALINVS(-1))) -0.006239 0.005425 -1.149894 0.2516

C -0.019679 0.120458 -0.163369 0.8704
DLOG(REALGDP) 1.394803 0.058198 23.96647 0.0000
DLOG(REALINVS) -0.187324 0.011409 -16.41900 0.0000

@DCUMDP(LOG(REALGOVT)) -0.341241 0.029695 -11.49168 0.0000
@DCUMDN(LOG(REALGOVT)) -0.183822 0.067059 -2.741196 0.0067
@DCUMDP(LOG(TBILRATE)) 0.001147 0.004388 0.261357 0.7941
@DCUMDN(LOG(TBILRATE)) -0.003174 0.003929 -0.807890 0.4202

R-squared 0.797226 Mean dependent var 0.008782
Adjusted R-squared 0.783204 S.D. dependent var 0.008864
S.E. of regression 0.004127 Akaike info criterion -8.075660
Sum squared resid 0.003202 Schwarz criterion -7.846374
Log likelihood 829.6417 Hannan-Quinn criter. -7.982891
F-statistic 56.85686 Durbin-Watson stat 1.913588
Prob(F-statistic) 0.000000

*Note: p-values and any subsequent tests do not account for model selection.

References—359

As in the previous example, our focus is on the final graph. LOG(TBILRATE) is asymmetric
in the short-run, but symmetric in the long-run. Accordingly, the absolute asymmetry graph
on the top is above zero at the start of the evolution, but then settles to zero as we approach
the long-run.

References

Banerjee, A., Dolado, J. J., Galbraith, J. W., Hendry, D., et al. (1993). “Co-integration, error correction,
and the econometric analysis of non-stationary data.” OUP Catalogue.

Engle, R. F. and Granger, C. W. (1987). “Co-integration and error correction: representation, estimation,
and testing.” Econometrica: Journal of the Econometric Society, pages 251–276.

Johansen, S. (1991). “Estimation and hypothesis testing of cointegration vectors in Gaussian vector
autoregressive models.” Econometrica: Journal of the Econometric Society, pages 1551–1580.

Johansen, S. (1995). “Likelihood-based inference in cointegrated vector autoregressive models.” Oxford
University Press on Demand.

Johansen, S. and Juselius, K. (1990). “Maximum likelihood estimation and inference on cointegration -
with applications to the demand for money.” Oxford Bulletin of Economics and Statistics, 52(2):169–
210.

Narayan, P. K. (2005). “The saving and investment nexus for china: evidence from cointegration tests.”
Applied Economics, 37(17):1979–1990.

360—Linear and Nonlinear ARDL

Park, J. (1990). “Testing for unit roots and cointegration by variable addition.” Advances in Econometrics,
8(2):107–133.

Perron, P. and Ng, S. (1996). “Useful modifications to some unit root tests with dependent errors and their
local asymptotic properties.” The Review of Economic Studies, 63(3):435–463.

Pesaran, M. H. and Shin, Y. (1998). “An autoregressive distributed-lag modelling approach to cointegra-
tion analysis.” Econometric Society Monographs, 31:371–413.

Pesaran, M. H., Shin, Y., and Smith, R. J. (2001). “Bounds testing approaches to the analysis of level rela-
tionships.” Journal of Applied Econometrics, 16(3):289–326.

Phillips, P. C. and Ouliaris, S. (1990). “Asymptotic properties of residual based tests for cointegration.”
Econometrica: Journal of the Econometric Society, pages 165–193.

Shin, Yongcheol, Byungchul Yu, and Matthew Greenwood-Nimmo (2014). “Modelling asymmetric cointe-
gration and dynamic multipliers in a nonlinear ARDL framework.” In Festschrift in Honor of Peter
Schmidt. 281–314. New York: Springer Science+Business Media.

Stock, J. H. and Watson, M. W. (1988). “Testing for common trends.” Journal of the American statistical
Association, 83(404):1097–1107.

Vector Error Correction Models (VECMs)

An important aspect of analyzing the interactions among a group of endogenous variables is
the identification of joint long-run and short-run dynamics. While the long-run dynamics are
associated with persistent forces and the notion of economic equilibrium, the short-run
dynamics are associated with transitory adjustments to long-run states.

While vector autoregressive (VAR) models are ideally suited to the study of contemporane-
ous dynamics among endogenous variables, the vector error correction model (VECM) is a re-
parameterization of the VAR process that is specifically designed for analyzing both the
long-run and short-run dynamics driving the underlying variables.

Cointegration

An understanding of VECMs requires a discussion of the notion of system-wide integration
and equilibrium. Some important definitions will set the stage for our discussion:

• An individual time series is said to be integrated of order , , if
is stationary, or , while is non-stationary.

• A system of time series is said to be integrated of order
, , if at least one of its constituent series is , and no series is

 for . Note that this definition does not preclude a subset of the system
series from being of lower order (or even stationary).

• An system is said to be cointegrated if a linear combination of the constituent
series is integrated of (lower) order, where . Further, a system that is inte-
grated of order is said to be cointegrated of order if there exists a cointegrat-
ing -vector such that . Notice that is not unique since
multiplication by any nonzero constant yields a different cointegrating vector.

To simplify the following discussion, we will, without loss of generality, restrict to 1 and
 to 0 so that and .

The concept of cointegration introduced above is closely related to the notion of economic
equilibrium. While individual economic processes may have volatile paths of evolution,
there may be global forces which eventually produce stable paths of evolution. In particular,
a group of economic variables may individually be , or non-stationary, but there may
exist cointegrated processes (linear combinations) which are , or stationary. In this
case, the cointegrated process is mean-reverting so that it while it may deviate from its
expected value in the short-run, it eventually settles at its long-run (asymptotic) expected
value.

ykt d ykt I d D
dykt

I 0 D
d 1– ykt

K yt y1t y2t yKt, , ,
d yt I d ykt I d
I h h d

I d
b b d yt

I d b
K b 0 byt I b b

d
b yt I 1 Dyt I 0

I 1
I 0

362—Vector Error Correction Models (VECMs)

The VECM Specification

When , the traditional levels-form VAR process is not the most useful representa-
tion since both the number and explicit form of any cointegrating relations are not easily
obtained from this specification. Consequently, when analyzing cointegrating relationships
we typically work with the VECM representation of the process.

The Basic VECM

Consider a VAR process of order :

(0.30)

where is a -vector of endogenous variables, are
 matrices of coefficients, and the residual vector is distrib-

uted with mean 0 and variance matrix . Note that for simplicity, we assume that there are
no deterministic terms in the VAR. This restriction is relaxed in the discussion of “VECMs
with Deterministics” on page 366.

The stability of the system is determined by the solutions to the determinant of the charac-
teristic polynomial,

(0.31)

The process is said to be stable if the roots of the polynomial lie outside the complex unit
circle, or have modulus greater than 1.

Note that when at least one constituent series is , the VAR process is unstable since
we may show that

(0.32)

is singular, , and Equation (0.31) is satisfied for roots lying on the unit circle.

In general, plays a key role in identifying both the number and nature of any cointegrat-
ing relationships. To better understand this role, we subtract from both sides of the
VAR representation Equation (0.30) and rearrange terms to obtain the VECM representation:

(0.33)

where

(0.34)

for .

yt I 1

p
yt A1yt 1– Apyt p– ut

yt y1t y2t yKt, , , K A1 AK, ,
K K ut u1t u2t uKt, , ,

S

det IK A1z– A2z
2– – Apz

p–() 0

ykt I 1

P IK A1– A2– – Ap– –

det P() 0

P

yt 1–

y t Pyt 1– G1 y t 1– Gp 1– y t p 1– – ut

Pyt 1– Gj y t j–

j 1

p 1–

 ut

Gj Aj 1 Ap –

j 1 p 1–, ,

The VECM Specification—363

To obtain this representation, we first take the VAR representation and subtract off the lag of
the endogenous variables from both sides:

(0.35)

Next, we reparameterize the model by rewriting the remaining elements of the right-hand
side as differences. Rewriting with the last two elements of the expression, we have

where

(0.36)

Similarly, we may transform the last two non-difference terms in this new expression. Focus-
ing on just those two terms, we have

(0.37)

Define

(0.38)

Then we may rewrite the term as a difference using

(0.39)

Notice that this process of rewriting the last two non-difference terms forms a recursion. For
the remaining non-difference pairs, we may write,

(0.40)

for . Substituting recursion Equation (0.40) into Equation (0.35), we have:

(0.41)

Then, using the initial value from Equation (0.36) and the recursion Equation (0.38),
we have

(0.42)

Note that we may recover the parameters of the VAR from the parameters of the VECM using
the relations

y t A1 IK– yt 1– A2yt 2– Ap 1– yt p 1– – Apyt p– ut

y t A1 IK– yt 1– Ap 1– Gp 1–– yt p 1– – Gp 1– y t p 1– – ut

Gp 1– Ap–

Ap 2– yt p 2– – Ap 1– Gp 1–– yt p 1– –

Gp 2– Gp 1– Ap 1––

yt p 1– –

Ap 2– yt p 2– – Ap 1– Gp 1–– yt p 1– –

Ap 2– yt p 2– – Gp 2– yt p 1– ––

Ap 2– Gp 2–– yt p 2– – Gp 2– yt p 2– – yt p 1– ––

Ap 2– Gp 2–– yt p 2– – Gp 2– y t p 2– –

Ajyt j– Aj 1 Gj 1– yt j 1 – Aj Gj– yt j– Gj y t j–

Gj Gj 1 Aj 1–

j p 3– 1, ,
y t A1 IK– G1– yt 1– G1 y t 1– Gp y t p– 1 ut

Gp 1–

Gj Aj 1 Ap –

364—Vector Error Correction Models (VECMs)

(0.43)

for .

To see the central role of in cointegration analysis, we focus on , the matrix rank of ,
where .

Since our discussion assumes that is , it follows that , and the
are for all . There are two important implications of these conditions. First, since

, it follows that has reduced rank (). Second, since the are all
, to balance the order of both sides of Equation (0.33), must also be .

For any , there exist matrices and each of rank , such that

(0.44)

where is the transpose operator. Then we may write

(0.45)

and given our assumptions, must be an linear combination of the series in
the system, with representing the cointegrating rank, and the cointegrating
matrix. is typically referred to as the loading matrix.

Note that although is not unique, a suitable normalization is possible by rearranging the
variables so that the first rows of the matrix are linearly independent:

(0.46)

where is a matrix. See Lütkepohl (2005) for details.

Lastly if , balancing both sides of Equation (0.35) requires . In this case we
say that there are no cointegrating relations since no linear combinations of are .

Basic Estimation

While there are several methods for estimation of VECMs, we focus on the maximum likeli-
hood (ML) variant, also known as reduced rank regression (RRR) (see Johansen (1995) and
Lütkepohl (2005) for a detailed exposition).

Formally, RRR assumes a known cointegration rank , Gaussian innovation vectors the
innovation vectors , a time dimension of length , and is best described using the VECM
matrix representation (Equation (0.33)):

(0.47)

A1 P IK G1

Aj Gj Gj 1––

Ap Gp 1––

2 j p 1–

P r P

0 r K

yt I 1 det P() 0 y t j–

I 0 j 0
det P() 0 P r K y t j–

I 0 Pyt 1– I 0

r 0 K r a b r
P ab

Pyt 1– a byt 1–

byt 1– I 0
r b K r

a

b

r

b
Ir

b K r–

b K r– K r– r

r 0 P 0
yt I 0

r
ut T

Y PY 1– G X U

The VECM Specification—365

where

(0.48)

The RRR estimator is then the maximizer of the log-likelihood objective function:

(0.49)

Johanson (1995) shows that optimizing the likelihood is equivalent to solving the eigenvalue
problem

(0.50)

under the constraint , where are the eigenvalues
associated with eigenvector matrix , and

(0.51)

Solving the constrained eigenvalue problem yields that are the eigenvalues of the sym-
metric matrix

(0.52)

In terms of computation, note that and are the residuals from regression of the
and on the . Further, may be obtained by first diagonalizing using the
solution to the auxiliary eigenvalue problem

(0.53)

to obtain eigenvalues and associated eigenvector matrix
. The square root of the inverse of can then be estimated as

(0.54)

Y y1 yT, ,

Y 1– y0 yT 1–, ,

G G1 Gp 1–, ,

X X1 XT, ,

X t yt 1– yt p 1– – , ,

U u1 uT, ,

L a b G, , log KT
2

--------- 2p log T
2
---- Sulog––

1
2
---tr Y abY 1–– G X– Su

1– Y abY 1–– G X– ()–

lS11 S10S00
1– S10– 0

VS11V IK l l1 lK, , K
V v1 vK, ,

Sij
1
T
----RiRj

R0 YM

R1 Y 1– M

M IT X X X 1– X –

l

S11
1 2– S10 S00

1– S11
1 2– S10

R0 R1 Y
Y 1– X S11

1 2– S11

rI S11– 0

r r1 rK, ,
W w1 wK, , S11

S11
1 2– W diag r1

2 rK
2, ,()W

366—Vector Error Correction Models (VECMs)

and the log-likelihood Equation (0.49) is maximized at

(0.55)

VECMs with Deterministics

The discussion thus far has ignored the presence of deterministic terms in the VAR specifica-
tion. The inclusion of deterministics has important implications for the estimation and inter-
pretation of VECMs, and there are different approaches to incorporating these terms.

The Classical Approach

Following Lütkepohl (2005), the classical approach to incorporating deterministic terms in
VECMs is to let follow a basic VAR() as in Equation (0.30), and to work with the aug-
mented process,

(0.56)

where denotes any -dimensional deterministic function of time, often a low-order
polynomial in .

Substituting into the VECM Equation (0.33), we obtain:

(0.57)

For example, if is a constant function, , then for all , and we
have

(0.58)

b̂ VS11
1 2–

â S01b̂ bS11S11
ˆ

1–

Ĝ Y âb̂Y 1–– X X X 1–

Ŝ
1
T
---- Y âb̂Y 1–– Ĝ X– Y âb̂Y 1–– Ĝ X–

Yt p

yt f t yt

f t K
t

yt yt f t –

y t ft P yt 1–
 f t – Gj y t j–

 f t j– –
j 1

p 1–

 ut

f t Gj f t j–
j 1

p 1–

–

P yt 1–
 f t – Gj y t j–

j 1

p 1–

 ut

f t f t f0 f t 0 t

y t P yt 1–
 f0– Gj y t j–

j 1

p 1–

 ut

u0 Pyt 1–
 Gj y t j–

j 1

p 1–

 ut

u0 Pf0–

The VECM Specification—367

In this case, the constant function may either be viewed as an intercept inside the
cointegrating relation, , or simply as an overall intercept in the VECM.
Importantly, in the latter case, the overall is said to be restricted since it must satisfy the
restriction imposed by the cointegrating relationship.

Likewise, if is a linear trend, , then for all , we have

(0.59)

In this case, the trend function may be included as a term in the cointegrating relation,
 along with the term appearing in the short-run

dynamics, or as an overall intercept and trend in VECM (). Notably, while the over-
all trend coefficient is restricted by the cointegrating relationship, the constant is
unrestricted as it contains free parameters unrelated to from the short-run dynamics.

Lütkepohl (2005) emphasizes the importance of the cointegrating restrictions in governing
the dynamic behavior of the levels of , noting that their removal induces additional
deterministics in the integrated VAR representation of the VECM. For example, if the restric-
tion on in Equation (0.58) is removed, the corresponding integrated VAR specification
will have a deterministic trend in the mean. Similarly, removing the restriction on in
Equation (0.59) will generate a quadratic trend in the VAR.

We can make the division between restricted and unrestricted deterministics concrete by re-
parameterizing Equation (0.57) to provide a general framework for a VECM with determinis-
tics:

(0.60)

where and are vector-valued functions denoting unrestricted and restricted
deterministics, respectively, with corresponding coefficients and . and are
assumed to be exclusive so that any deterministic function in is not included in ,

f t
P yt 1–

 f0– u0
u0

u0 Pf0–

f t f t f0 f1t f t f1 t

y t IK Gj
j 1

p 1–

–

f1 P yt 1–
 f0 f1t–– Gj y t j–

j 1

p 1–

 ut

u0 P yt 1–
 f1t– Gj y t j–

j 1

p 1–

 ut

u0 u1t Pyt 1–
 Gj y t j–

j 1

p 1–

 ut

u0 Pf0– IK Gj
j 1

p 1–

–

f1

u1 Pf1–

f t
P yt 1–

 f0 f1t–– IK Gj– f1
u0 u1t

u1 u0
P

yt

u0
u1

y t gt t P yt 1–
 ht t 1– – Gj y t j–

j 1

p 1–

 ut

t t t t
g h t t t t
t t t t

368—Vector Error Correction Models (VECMs)

and vice versa. For the constant function above, is empty and
. For the linear trend function , , and
.

Lastly, note that while this discussion has focused on deterministic functions of time, the
framework allows for the consideration of other types of exogenous variables which enter
either the restricted cointegrating or the unrestricted transitory space.

The Johansen, Hendry, and Juselius Approach

An alternative treatment of deterministics follows the conventions outlined in Johansen
(1995), Hendry and Juselius (2001), and Juselius (2006), which we will term the JHJ
approach. The approach begins with the VECM specification:

(0.61)

By virtue of cointegration, both and are stationary around their expected val-
ues. Taking expectations of Equation (0.61) yields:

(0.62)

where is the lag operator.

Let and be the expected value paths of and
. Then rewriting Equation (0.62) in terms of the deterministic component

yields,

(0.63)

Johansen (1995) and Juselius (2006) show that and may be thought of as trans-
formations of in the direction and , where is the orthogonal complement of
the latter. In other words, the deterministic function may be additively decomposed
into the space spanned by the transitory variables , and the space spanned by the
cointegrating relations . Note that this approach differs from the classical approach
in that deterministic terms can appear simultaneously in both the unrestricted (transitory)
and in the restricted (cointegrated) spaces.

When is a constant function so that and are also constant func-
tions, the VECM in Equation (0.61) may be written as:

f t f0 t t
t t 1 f t f0 f1t t t 1
t t t

y t f t Pyt 1– Gj y t j–

j 1

p 1–

 ut

X t byt 1–

IK G L – E y t f t aE byt 1–

G L GjL
j

j 1

p 1–

L

g t E y t h t E byt 1– y t
byt 1– f t

f t IK G L – g t ah t –

g t h t
f t b b b

f t
y t

byt 1–

f t g t g0 h t h0

The VECM Specification—369

(0.64)

Similarly, when is a linear trend function so that and
, the VECM in Equation (0.61) is given by

(0.65)

Estimating Models with Deterministics

Estimation of VECMs with deterministics requires modification of the approach outlined in
“Basic Estimation” on page 364.

Deterministic specifications which derive from the classical approach in Equation (0.57) are
accommodated by including the restricted deterministic regressors in the cointegrating
space, and the unrestricted deterministics in the overall VECM. We modify Equation (0.47)
to provide:

(0.66)

where

(0.67)

where and , and are the unrestricted and restricted deterministic compo-
nents and coefficients, respectively.

y t IK G L – g0 ah0– Pyt 1– Gj y t j–

j 1

p 1–

 ut

g0 a byt 1– h0– Gj y t j–

j 1

p 1–

 ut

f t g t g0 g1t
h t h0 h1t

y t IK G L – g0 g1t a h0 h1t – Pyt 1– Gj y t j–

j 1

p 1–

 ut

g0 g1t a byt 1– h0– h1t– Gj y t j–

j 1

p 1–

 ut

Y P
+Y 1–

+
G

+ X + U

Y y1 yT, ,

Y 1–
+ y0

+ yT 1–
+, ,

yt
+ yt t t ,

P
+

a b h,

G
+

G1 Gp 1– g, , ,

X + X1 + XT +, ,

X t
+ yt 1– yt p 1– – t t , , ,

U u1 uT, ,

g t t h t t

370—Vector Error Correction Models (VECMs)

When deterministics are incorporated using the JHJ convention, the estimator must allow
for the possibility that the same deterministic term can appear both inside the cointegrating
equation and outside it.

It is useful to divide the cointegrating regressors and coefficients into those present only
inside the cointegrating equation (and), those present only outside the equation (
and), and those that are both inside and outside the cointegrating relation (, , and

) so that we have and , with coefficients
, and .

One estimation approach hinges on the ideas that the cointegrating (equilibrium) equation
is stable around its mean of zero:

(0.68)

Given this requirement, estimation may be conducted in three steps:

• Step 1: All dual deterministic regressors are first removed from inside the cointe-
grating relationship, but retained outside. Then , and are estimated using the
classical approach outlined in Equation (0.55) and Equation (0.67) using determinis-
tics and coefficients .

• Step 2: Given the estimates and from Step 1, is estimated by choosing val-
ues of the coefficients so that the cointegrating equation has conditional mean zero:

(0.69)

• Step 3: Using the estimates from Steps 1 and 2, the short-run coefficients are esti-
mated using appropriately modified versions of the expressions in Equation (0.55)
and Equation (0.67) with deterministics and coefficients .

While there is no single approach for estimating the coefficients in Step 2 above, a simple
linear regression of on satisfies the desired condition.
When the deterministic regressors are the usual constant and trend, this regression reduces
to a familiar least squares detrending of the cointegrating relation. See also Proposition 7.5
in Lütkepohl (2005). This is the method employed by EViews.

For example, consider a model where the constant and trend terms appear both inside and
outside the cointegrating equation:

(0.70)

• Step 1 estimates the classical model,

(0.71)

t1 h1 t1
g1 t2 h2

g2 t t1 t2, t t1 t2,
g g1 g2, h h1 n2,

E byt h1t1 t 1– – h2t2 t 1– – 0

t2
b a h1

t1 h1

b̂ ĥ1 h2

E b̂yt ĥ1t1 t 1– – h2t2 t 1– – 0

G
+

t g

b̂ yt ĥ1t1 t 1– – t2 t 1 –

yt g0 g1t a byt 1– h0– h1t– Gj y t j–

j 1

p 1–

 ut

yt g0 g1t abyt 1– Gj y t j–

j 1

p 1–

 ut

The VECM Specification—371

to obtain estimates and , along with , , and for .

• Step 2 uses the least squares regression,

(0.72)

to obtain estimates and .

• Step 3 updates the estimates of , , and the using standard regression,

(0.73)

The final coefficient estimates are given by and from Step 1, and from Step 2,
and from Step 3.

Popular Deterministic Models

The empirical literature has centered around five scenarios involving deterministic terms:

• Case 1: No deterministics, so that , in the classical
framework, and in the JHJ approach.

• Case 2: Restricted constant, so that and and in the
classical formulation, and and under JHJ.

Here, the constant is restricted to the cointegrating space and does not appear in the
transitory space. The cointegrating mean is non-zero and the cointegrating equation
restriction ensures that no linear trends exist in the corresponding VAR.

• Case 3: Unrestricted constant, so that , and in the
classical approach, and and for JHJ.

In this case, the constant appears in the transitory space but does not appear in the
cointegrating space. The model has no deterministics in the cointegrating space, and
exhibits a linear trend in the VAR representation.

• Case 3 (JHJ): Unrestricted constant in both the transitory and the cointegrating space
so that and .

This JHJ model has a non-zero mean in the cointegrating relations, and has a linear
trend in the corresponding VAR. Note that this case reduces to classical Case 3 when
the restriction is imposed.

• Case 4: Unrestricted constant and restricted trend so that , and
, in the classical approach; and for

 under JHJ.

Here, a constant appears in the transitory space but does not appear in the cointegrat-
ing space, and the trend term appears only in the cointegrating space. This model has

b̂ â g̃0 g̃1 G̃j j 1 p 1–, ,

b̂yt 1– h0 h1t et

ĥ0 ĥ1

g0 g1 Gj

Ĝ
+

Ĝ1 Ĝp 1– ĝ, , , Y â b̂ ĥ0 ĥ1, , Y 1–
+– X X X 1–

b
ˆ

â ĥ0 ĥ1
Ĝ

+

f t 0 t t t t 0
g t h t 0

t t 0 t t 1 h0 0
g t 0 h t h0 0

t t 1 g0 0 t t 0
g t g0 0 h t 0

g t g0 0 h t h0 0

h0 0

t t 1 g0 0
t t t g1 0 g t g0 0 h t h1t
h1 0

372—Vector Error Correction Models (VECMs)

a linear trend in the cointegrating relations, and has a linear trend in the correspond-
ing VAR representation.

• Case 4 (JHJ): Unrestricted constant and restricted trend so that and
 in the JHJ framework.

The constant appears in both the transitory space and the cointegrating space, while
the trend term appears only in the cointegrating space. The model has a non-zero
mean and non-zero trend in the cointegrating relations, and has a linear trend in the
corresponding VAR formulation. Note that this case reduces to classical Case 4 when
the restriction is imposed.

• Case 5: Unrestricted constant and trend, so that , and
 in the classical approach; , and

 under JHJ.

Here, the constant and trend appears in the transitory space. The model has a non-
zero mean and non-zero trend in the cointegrating relations, and has a quadratic trend
in the corresponding VAR.

• Case 5 (JHJ): Unrestricted constant and trend, so that ,
and , .

In this case, the constant and trend appear in both the transitory and cointegrating
spaces. The model has a non-zero mean and non-zero trend in the cointegrating rela-
tions, and has a quadratic trend in the corresponding VAR formulation. Note that this
case reduces to classical Case 5 when the restrictions are imposed.

Determination of Cointegrating Rank

A fundamental prerequisite of VECM estimation is a priori knowledge of the number of
cointegrating relations . Accordingly, it is important to discuss formal methods for deter-
mining this order.

As in Equation (0.33), we begin with a VECM with endogenous variables and no deter-
ministic terms, and suppose that has rank with .

Then, two different sets of hypotheses are of interest:

1. : versus :

2. : versus :

Both sets of hypotheses may be tested with the likelihood ratio statistic:

g t g0 0
h t h0 h1t

h0 0

t t 1 t, g0 g1, 0
t t 0 g t g0 g1t g0 g1, 0
h t 0

g t g0 g1t g0 g1, 0
h t h0 h1t h0 h1, 0

h0 h1, 0

r

K
P rk P() r 0 r K

H0 rk P() r0 H1 r0 rk P() r1 K

H0 rk P() r0 H1 r0 rk P() r1 r0 1

Estimating VEC Models in EViews—373

(0.74)

where denotes the maximized value of the Gaussian likelihood function for cointegra-
tion rank , and are the eigenvalues associated with the symmetric matrix in
Equation (0.52).

The asymptotic distributions of are nonstandard and are given by:

(0.75)

where and are respectively the trace and maximum eigenvalue of the
matrix

(0.76)

where is the -dimensional standard Wiener process.
and are commonly referred to as the trace eigenvalue test and maximum
eigenvalue test, respectively.

The basic approach to cointegration rank determination is to run a battery of these hypothe-
sis tests starting with the null hypothesis . If a test rejects, increase the null by
one and repeat the test. The estimated cointegration rank is then the first (minimum) for
which the test fails to reject the null.

When deterministic terms are present, the test statistics and the test strategy are unchanged,
although the eigenvalues of the matrix in Equation (0.52) will differ since they are based on
the extended regressors and instead of and . This difference is naturally
reflected in the limiting distribution of the statistics. Critical values for statistics with and
without deterministic terms are tabulated in MacKinnon, Haug and Michelis (1999).

Estimating VEC Models in EViews

Estimation of VEC model in EViews is a special case of estimation in a var object. From the
main application menu of an existing var object, click on the Estimate button to open the
VAR Specification estimation dialog. Alternately, you may create a new VAR object by

lLR r0 r1, 2 ln L r1 () ln L r0 ()–

T ln 1 li–()
i 1

r1

 ln 1 li–()
i 1

r0

–

T– ln 1 li–()
i r0 1

r1

L s
s li

lLR r0 r1,
lLR r0 K, tr D()

lLR r0 r0 1, lmax D()

tr D() lmax D()

D W Wd
0

1

 WW sd
0

1

W Wd
0

1

W WK r0– s K r0– lLR r0 K,
lLR r0 r0 1,

r0 0 r0
r0

Y 1–
o X o Y 1– X

374—Vector Error Correction Models (VECMs)

selecting Object/New Object... group, then selecting VAR. Once the dialog appears, select
Vector Error Correction in the Method dropdown menu to display the VEC estimation dia-
log:

Once you have filled the in the dialog, simply click OK to estimate the VEC. Estimation of a
VEC model is carried out in two steps. In the first step, we estimate the cointegrating rela-
tions from the Johansen procedure as used in the cointegration test. We then construct the
error correction terms from the estimated cointegrating relations and estimate a VAR in first
differences including the error correction terms as regressors.

There are three tabs in the dialog: Basics, Cointegration, and VEC Restrictions. We discuss
each of these tabs in turn.

Basics

In the Basics tab, you will provide the usual information about the Lag intervals, Estima-
tion sample, Endogenous variables, and lists of different types of Exogenous variables:

• Importantly, in contrast to the standard VAR case, the Lag intervals specification
refers to lags of the first difference terms in the conditional EC representation of the
VEC. For example, the lag specification “1 1” will include lagged first difference terms

Estimating VEC Models in EViews—375

on the right-hand side of the VEC. Rewritten in levels, this VEC is a restricted VAR
with two lags. To estimate a VEC with no lagged first difference terms, specify the lag
as “0 0”

• The Exogenous variables section allows you to specify exogenous variables that are
not included in the standard in-built deterministic trend cases. This convention means
that the constant and linear trend term should not be included in the Exogenous vari-
ables edit boxes. The constant and trend specification for VECs should be specified
using the dropdown menu in the Cointegration tab.

You should enter any other variables in the edit field corresponding to whether they
appear in the Short-run, Long-run, or Both log-run and short-run lists of variables.

Cointegration

Important options related to cointegration can be accessed by clicking on the Cointegration
tab:

• As VEC estimation requires a priori specification of the Number of cointegrating
relations, you should use the dropdown menu to select the appropriate number.

376—Vector Error Correction Models (VECMs)

• Furthermore the Deterministic trend specification governs the use of trend terms in
the CEC specification as described in “Popular Deterministic Models” on page 371.
Note that as you make a selection in the dropdown, the text below will change to give
you a more detailed description of the assumptions underlying the choice.

VEC Restrictions

Since the cointegrating vector is not fully identified, EViews applies standard normaliza-
tions to identify the remaining coefficients. Alternately, you may wish to impose your own
identifying restrictions when performing estimation. Restrictions may be imposed on the
cointegrating vector (elements of the matrix) and/or on the adjustment coefficients (ele-
ments of the matrix).

To impose restrictions in estimation, click on the VEC Restrictions tab to display the restric-
tions dialog. You will enter your restrictions in the edit box that appears when you check the
Impose Restrictions box:

“Specifying VEC Restrictions” on page 377 describes the syntax for specifying these restric-
tions in greater detail.

b

b

a

Estimating VEC Models in EViews—377

Specifying VEC Restrictions

Restrictions can be imposed on the cointegrating vector (elements of the matrix) and/or
on the adjustment coefficients (elements of the matrix).

Restrictions on the Cointegrating Vector

To impose restrictions on the cointegrating vector , you must refer to the (i,j)-th element
of the transpose of the matrix by B(i,j). The i-th cointegrating relation has the represen-
tation:

B(i,1)*y1 + B(i,2)*y2 + ... + B(i,k)*yk

where y1, y2, ... are the (lagged) endogenous variable. Then, if you want to impose the
restriction that the coefficient on y1 for the second cointegrating equation is 1, you would
type the following in the edit box:

B(2,1) = 1

You can impose multiple restrictions by separating each restriction with a comma on the
same line or typing each restriction on a separate line. For example, if you want to impose
the restriction that the coefficients on y1 for the first and second cointegrating equations are
1, you would type:

B(1,1) = 1

B(2,1) = 1

Currently all restrictions must be linear (or more precisely affine) in the elements of the
matrix. So for example

B(1,1) * B(2,1) = 1

will return a syntax error.

Restrictions on the Adjustment Coefficients

To impose restrictions on the adjustment coefficients, you must refer to the (i,j)-th elements
of the matrix by A(i,j). The error correction terms in the i-th VEC equation will have
the representation:

A(i,1)*CointEq1 + A(i,2)*CointEq2 + ... + A(i,r)*CointEqr

Restrictions on the adjustment coefficients are currently limited to linear homogeneous restric-
tions so that you must be able to write your restriction as , where is a
known matrix. This condition implies, for example, that the restriction,

A(1,1) = A(2,1)

is valid but:

A(1,1) = 1

will return a restriction syntax error.

b
a

b

b

b

a

R vec a 0 R
qk r

378—Vector Error Correction Models (VECMs)

One restriction of particular interest is whether the i-th row of the matrix is all zero. If
this is the case, then the i-th endogenous variable is said to be weakly exogenous with
respect to the parameters. See Johansen (1995) for the definition and implications of weak
exogeneity. For example, if we assume that there is only one cointegrating relation in the
VEC, to test whether the second endogenous variable is weakly exogenous with respect to

 you would enter:

A(2,1) = 0

To impose multiple restrictions, you may either separate each restriction with a comma on
the same line or type each restriction on a separate line. For example, to test whether the
second endogenous variable is weakly exogenous with respect to in a VEC with two
cointegrating relations, you can type:

A(2,1) = 0

A(2,2) = 0

You may also impose restrictions on both and . However, the restrictions on and
must be independent. So for example,

A(1,1) = 0

B(1,1) = 1

is a valid restriction but:

A(1,1) = B(1,1)

will return a restriction syntax error.

Identifying Restrictions and Binding Restrictions

EViews will check to see whether the restrictions you provided identify all cointegrating vec-
tors for each possible rank. The identification condition is checked numerically by the rank
of the appropriate Jacobian matrix; see Boswijk (1995) for the technical details. Asymptotic
standard errors for the estimated cointegrating parameters will be reported only if the
restrictions identify the cointegrating vectors.

If the restrictions are binding, EViews will report the LR statistic to test the binding restric-
tions. The LR statistic is reported if the degrees of freedom of the asymptotic -distribution
is positive. Note that the restrictions can be binding even if they are not identifying, (e.g.
when you impose restrictions on the adjustment coefficients but not on the cointegrating
vector).

Options for Restricted Estimation

Estimation of the restricted cointegrating vectors and adjustment coefficients generally
involves an iterative process. The VEC Restrictions tab provides iteration control for the
maximum number of iterations and the convergence criterion. EViews estimates the
restricted and using the switching algorithm as described in Boswijk (1995). Each step

a

b

b

b

b a b a

x2

b a

b a

Examples—379

of the algorithm is guaranteed to increase the likelihood and the algorithm should eventually
converge (though convergence may be to a local rather than a global optimum). You may
need to increase the number of iterations in case you are having difficulty achieving conver-
gence at the default settings.

Once you have filled the dialog, simply click OK to estimate the VEC. Estimation of a VEC
model is carried out in two steps. In the first step, we estimate the cointegrating relations
from the Johansen procedure as used in the cointegration test. We then construct the error
correction terms from the estimated cointegrating relations and estimate a VAR in first differ-
ences including the error correction terms as regressors.

Examples

Below, we demonstrate VEC estimation using the EViews example workfile “var1.WF1”,
located under the Chapter 44 - Vector Autoregression and Error Correction Models folder.
This is a workfile with a number of classic macroeconomic variables including gross domes-
tic product, various measure of money supply, treasury bills of different maturations, indus-
trial production, producer price index, the unemployment.

Example 1: Unrestricted Constant (JHJ)

We begin with the classical problem of studying the relationship between money supply
(M1), gross domestic product (GDP), and 3-month Treasury bills (TB3).

These three endogenous variables will enter the VEC system with lags 1 through 4, and we
assume that there exists a single cointegrating relationship. Furthermore, we will estimate
the VEC using the default deterministic specification – Case 3 (JHJ): Unrest. constant. In
this case, the constant is not restricted to the cointegrating relations, but is artificially
inserted into the cointegrating vector using orthogonalization (“The Johansen, Hendry, and
Juselius Approach” on page 368).

To estimate this model, select Vector Error Correction in the Method dropdown menu to
display the VEC estimation dialog then enter “

m1 gdp tb3

in the Endogenous variables field on the Basics tab.

Furthermore, specify

1 4

in the Lag intervals for diff. endog field

and

1959m01 1982m03

380—Vector Error Correction Models (VECMs)

in the Estimation sample edit field. We emphasize again that the lag interval specification
refers to the differences of the dependent variable in the conditional error correction equa-
tion, and not the dependent variable itself in the levels equation.

You may leave the remaining fields and options at their default values. Hit OK to estimate
the VEC with this specification. EViews will estimate the VEC and display the output in a
table which contains four sections. Click on the Name button and enter VEC1.

At the top of the output, EViews shows a summary of the estimation procedure, including
the sample, lag specification, variables, and deterministic assumptions used on constructing
the estimates:

Next is a table of coefficient estimates for the cointegrating relation. In this case which is
estimated assuming the default of one cointegrating vector, there is a single column of coef-
ficients representing the only column of the cointegrating matrix. Since the deterministics
are assumed to follow Johansen-Hendry-Juselius variant Case 3, the cointegrating relation
includes an orthogonalized intercept estimate of -170.6729

Notably, there is no standard estimate for the orthogonalized intercept estimate.

Next, EViews displays a table containing the coefficient estimates for the error correction
regressions, with the results for each dependent variable appearing in columns.

Vector Error Correction Estimates
Date: 05/30/22 Time: 11:25
Sample (adjusted): 1959M06 1982M03
Included observations: 274 after adjustments
Standard errors in () & t-statistics in []
Lags interval (in first differences): 1 to 4
Endogenous variables: M1 GDP TB3
Deterministic assumptions: Case 3 (Johansen-Hendry-Juselius):
 Constant belongs to short-run regressors and artificially to
 long-run regressors.

Cointegrating Eq: CointEq1

M1(-1) 1.000000

GDP(-1) -0.007056
 (0.01726)
 [-0.40893]

TB3(-1) -10.01482
 (3.03592)
 [-3.29877]

C -170.6729

Examples—381

The long-run portion of these results, the adjustment coefficients , appear at the top of the
table, as the estimated coefficient on COINTEQ1.

The remaining coefficients are estimates of the short-run-dynamics coefficients . Note that
for JHJ Case 3, the short-run results include estimates of the intercept, C. Since C is both
inside and outside the cointegrating equation, keep in mind that the short-run estimate is
obtained conditionally on the orthogonalized estimate of C in the cointegrating equation.

Just below the remainder of the short-run estimates including the estimate for C is the last
part of the output showing summary statistics associated with the overall fit.

a

G

382—Vector Error Correction Models (VECMs)

Example 2: Unrestricted Constant, Restricted Trend

We modify the previous example to use only the first 2 lags, to have cointegration rank 2,
and assume that the constant is entirely unrestricted, but restricting the trend to the cointe-
grating relation and the intercept to the short-run equation. To proceed, copy the existing var
object, click on the Estimate button to bring up the VAR estimation dialog again, and then
change the Lag intervals for diff. endog to “1 2”:

Examples—383

then click on the Cointegration tab. select 2 as the Number of cointegrating relations, and
change the Deterministic trend specification dropdown to 4: Unrestricted constant and
restricted trend.

384—Vector Error Correction Models (VECMs)

Click on OK to estimate the revised model, then press Name and enter VEC2. the top por-
tion of the output is given by:

Notice that there are now two cointegrating vectors, CointEq1 and CointEq2, which include
a trend, with coefficient estimates -0.1129 and 4.6129, respectively, and standard errors, but
not a constant since the latter is in the short-run regressors.

The error correction results, which now include the two cointegrated series COINTEQ1 and
COINTEQ2, and an intercept, and the summary statistics results are presented below:

Vector Error Correction Estimates
Date: 05/30/22 Time: 11:58
Sample (adjusted): 1959M04 1982M03
Included observations: 276 after adjustments
Standard errors in () & t-statistics in []
Lags interval (in first differences): 1 to 2
Endogenous variables: M1 GDP TB3
Deterministic assumptions: Case 4: Constant belongs to short-run
 regressors. Trend belongs to long-run regressors.

Cointegrating Eq: CointEq1 CointEq2

M1(-1) 1.000000 0.000000

GDP(-1) 0.000000 1.000000

TB3(-1) -16.48667 -141.5224
 (3.23023) (24.0537)
 [-5.10386] [-5.88360]

@TREND -0.112890 4.612925
 (0.14657) (1.09141)
 [-0.77022] [4.22657]

Examples—385

Example 3: Unrestricted Constant, Restricted Trend, and Exogenous

Extending the previous model, let us augment the cointegrating relation and the short-run
dynamics by including exogenous variables. These exogenous variables can enter the cointe-
grating relation, so that they affect the long-run relationship, and they can be in the short-run
relationship where they affect the dynamics of convergence to equilibrium.

Let us assume that the 10-year Treasury bill rate (TB10Y) is an exogenous variable inside the
cointegrating relation but not a part of the short-run dynamics, that the Producer Price Index
(PPI), a measure of inflation, impacts only the short-run dynamics to convergence, and that
the unemployment rate (UNRATE) is in both the short and long-run relationships.

386—Vector Error Correction Models (VECMs)

Copy the existing var then click on Estimate to modify the specification. We enter “PPI” in
the Short-run (outside cointegrating equation) field, “TB10Y” in the Long-run (inside
cointegrating equation) field, and “URATE” in the Both long-run and short-run field:

Furthermore, we’ll assume there’s a single cointegrating relation, and that the deterministic
case specifies a constant and trend only affect the adjustment to equilibrium dynamics
(short-run).

Click on the Cointegration tab and change the Number of cointegrating relations drop-
down to 1, and set the Deterministic trend specification dropdown to 5: (JHJ) Unrest.
constant and trend:

Examples—387

Click on OK to estimate the updated specification.

388—Vector Error Correction Models (VECMs)

Notice that in addition to a description of the deterministic trend assumption, the output
header now lists the exogenous variables included in the specification, by type.

Below the header, the results for the cointegrating vector show the three endogenous vari-
ables, followed by the coefficient for the long-run only variable TB10Y, and the both long
and short-run variable URATE. Since the latter is included in the cointegrating equation via
orthogonalization, is no standard error associated with the estimated coefficient.

The error correction results include estimates for the two short-run only deterministic trend
variables, C and @TREND, along with the short-run only PPI, and the both long and short-
run URATE. As with other both long and short-run variables, the coefficient of URATE is
estimated conditionally on the orthogonalization.

Vector Error Correction Estimates
Date: 05/30/22 Time: 13:03
Sample (adjusted): 1959M04 1982M03
Included observations: 276 after adjustments
Standard errors in () & t-statistics in []
Lags interval (in first differences): 1 to 2
Endogenous variables: M1 GDP TB3
Exogenous variables (short-run only): PPI
Exogenous variables (long-run only): TB10Y
Exogenous variables (short-run and long-run): URATE
Deterministic assumptions: Case 5: Constant and trend both
 belong to short-run regressors.

Cointegrating Eq: CointEq1

M1(-1) 1.000000

GDP(-1) -0.170876
 (0.02142)
 [-7.97831]

TB3(-1) -11.83218
 (1.18748)
 [-9.96412]

TB10Y 11.01109
 (1.63177)
 [6.74795]

URATE -2.626517

Examples—389

Example 4: VEC Restrictions

We may continue with the previous example after imposing restrictions on elements of the
 matrix.

Once again, copy the existing var object, click on the Estimate button to bring up the VAR
estimation dialog. Leave the existing specification in place, including the exogenous vari-
ables, but click on the VEC Restrictions tab to display the restrictions settings dialog. Click

b

390—Vector Error Correction Models (VECMs)

on the Impose Restrictions to enable the restrictions and enter “B(1,1)=1, B(1,2)=0.25,
B(1,3)=0.5” in the edit field:

This specification restricts the first three elements of the cointegrating vector to the specified
values. Click on OK to estimate the restricted VEC.

Examples—391

The familiar heading information is augmented to show the cointegrating restrictions, infor-
mation about estimation and convergence, an analysis of whether the restrictions are identi-
fying, and the results for a LR test for those restrictions that are binding.

The reported estimates of the cointegrating relation show both the restricted and unre-
stricted coefficient values:

Note that the elements of the cointegrating value reflect the restrictions imposed in estima-
tion, and that there are no standard errors for the restricted values.

Vector Error Correction Estimates
Date: 05/30/22 Time: 13:22
Sample (adjusted): 1959M04 1982M03
Included observations: 276 after adjustments
Standard errors in () & t-statistics in []
Lags interval (in first differences): 1 to 2
Endogenous variables: M1 GDP TB3
Exogenous variables (short-run only): PPI
Exogenous variables (long-run only): TB10Y
Exogenous variables (short-run and long-run): URATE
Deterministic assumptions: Case 5: Constant and trend both belong to
 short-run regressors.

Cointegrating restrictions:
 b(1,1)=1
 b(1,2)=0.25
 b(1,3)=0.5

Convergence achieved after 423 iterations.
Restrictions identify all cointegrating vectors.

LR test for binding restrictions (rank = 1):
Chi-square(7) 68.76786
Probability 0.000000

Cointegrating Eq: CointEq1

M1(-1) 1.000000

GDP(-1) 0.250000

TB3(-1) 0.500000

TB10Y 94.02222
 (18.4081)
 [5.10766]

URATE -209.8535

392—Vector Error Correction Models (VECMs)

The form of the remaining output (not shown), which consists of the error correction regres-
sion results and summary statistics is unchanged from unrestricted estimation, with the
exception of the number of coefficients.

Example 5: Cointegration Testing

We may carry out a Johansen cointegration test to determine the rank that should be used in
estimation of the VEC in Example 3. This test is available from a group window using View/
Cointegration Test/Johansen System Cointegration Test..., or from an estimated VAR
object window using Views/Cointegration Test... In the latter case, the test dialog will be
pre-filled with the cointegration specification, if applicable:

For the VEC in Example 3, we can keep everything at the default values and click on OK to
perform the test. The output is a spool object with 4 tables:

Examples—393

The first table is a Summary of the estimation specifications under which the cointegration
rank test is conducted.

Following the summary is a Rank Tests table showing Johansen cointegration tests based on
the trace and maximum eigenvalue statistics. The trace statistic reported in the first block
tests the null hypothesis of at most cointegrating relations against the alternative of
cointegrating relations, where is the number of endogenous variables. The maximum
eigenvalue statistics tests the null hypothesis of cointegrating relations against the alterna-
tive of cointegrating relations.

There are a few other details to keep in mind:

1. Simulated critical values are available for up to series. Also note that the
critical values depend on the trend assumptions, and may not be appropriate for mod-
els that contain other deterministic regressors.

2. The trace statistic and the maximum eigenvalue statistic may yield conflicting results.
For such cases, we recommend that you examine the estimated cointegrating vector

r K
K

r
r 1

K 10

394—Vector Error Correction Models (VECMs)

and base your choice on the interpretability of the cointegrating relations; see Johan-
sen and Juselius (1990) for an example.

3. In some cases, the individual unit root tests will show that some of the series are inte-
grated, but the cointegration test will indicate that the matrix has full rank
(). This apparent contradiction may be the result of low power of the cointe-
gration tests, stemming perhaps from a small sample size, or it may serve as an indi-
cator of specification error.

The next node contains the Unrestricted Coefficients table which provides estimates of the
cointegrating vector and the adjustment parameters . As is well known, the cointegrat-
ing vector is not identified unless we provide an arbitrary normalization. This table
reports estimates of and under the normalization where is defined
in Equation (0.51). Note that the transpose of is reported in the table so that the first row
is the first cointegrating vector, the second row is the second cointegrating vector, and so on.

The final node contains the Normalized Coefficients table which reports estimates from a
different normalization for each possible number of cointegrating relations. This alternative
normalization expresses the first variables as functions of the remaining variables
in the system. Asymptotic standard errors are reported in parentheses for the parameters
that are identified.

P

r K

b a

b

b a bS11b IK S11
b

r K r–

Examples—395

Example 6: Rank Tests

It is possible to conduct a battery of rank tests for each of the deterministic assumptions that
are available for estimation. To do this, proceed from the previous example and click on
Views/Cointegration Test... to once again bring up the testing dialog.

396—Vector Error Correction Models (VECMs)

This time, click on Summarize all deterministic case assumptions and hit OK.

The top portion of the spool output shows the test settings and assumptions, along with the
rank selection results broken down by test type and deterministic case:

Examples—397

The remainder of the output shows the information criteria broken down by rank and deter-
ministic case:

398—Vector Error Correction Models (VECMs)

References

Hendry, David F, and Katarina Juselius (2001). “Explaining Cointegration Analysis: Part II.” The Energy
Journal, 22(1).

Johansen, Søren (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford
University Press on Demand.

Juselius, Katarina (2006). The Cointegrated VAR Model: Methodology and Applications. Oxford University
Press.

Lütkepohl, Helmut (2005). New Introduction to Multiple Time Series Analysis. Springer Science & Business
Media.

MacKinnon, James G, Alfred A. Haug, and Leo Michelis (1999). “Numerical distribution functions of like-
lihood ratio tests for cointegration.” Journal of Applied Econometrics, 14(5): 563–577.

Difference-in-Difference Estimation

Difference-in-difference (DiD) estimation is a popular method of causal inference that allows
estimation of the average impact of a treatment on individuals.

Although DiD can be estimated on repeated cross-sectional data, most research in econo-
metrics has concentrated on estimation of DiD models in a panel data setting, and EViews
offers built in tools for estimating DiD models only within panel workfiles.

This chapter will introduce estimation of the DiD model using the common two-way fixed-
effects (TWFE) method, as well as post-estimation diagnostics of the TWFE model, such as
those by Goodman-Bacon (2021), Callaway and Sant’Anna (2021), and Borusyak, Jaravel,
and Spiess (2021).

Background

Difference-in-difference estimation is a method of analyzing the impact of a treatment or
policy on an outcome by comparing the difference in the outcome variable before and after
treatment for those who participated in the treatment, with those who did not participate in
the treatment.

Single Treatment Date

To begin, we shall suppose that there is a single treatment date, , on which some of the
individuals in our study are given the treatment. The remainder of the individuals never
receive treatment. We denote the treated individuals as belonging to group T, and those not
treated as belonging to group NT. Along with data on whether an individual is treated, we
also have time series data on an outcome variable, Y, with periods both before and after the
treatment date, for all individuals.

To estimate the average impact of the treatment on Y, we compare the difference in the
mean of Y between the treated and never treated groups before and after the treatment date:

(0.77)

which we term the Average Treatment Effect for the Treated (ATET).

The ATET may be visualized as:

D

ATET ŶT t D, ŶNT t D,– ŶT t D, ŶNT t D,– –

400—Difference-in-Difference Estimation

The calculation of the ATET may be embedded in an OLS regression structure, using the
model

(0.78)

where D is a dummy variable equal to 1 if the observation lies after , and T is a dummy
variable equal to 1 if the observation is in the treated group. For notational simplicity, we
ignore additional exogenous regressors in Equation (0.78), though note that their inclusion
does not change the behavior of the estimator.

It is easy to see that the ATET is equal to the value of , which measures the marginal
effect of being in the treatment group after .

Alternately, the ATET may be estimated using a fixed effects model with fixed effects in both
the group and time dimensions, and a dummy variable corresponding to whether the obser-
vations is treated (i.e., in the treated group and post-treatment date),

(0.79)

where identifies the treatment () and the non-treatment () groups, and
 takes a value of 1 whenever a treatment group observation is actually treated. In this

specification, the ATET is equal to the value of .

Further, the estimate in Equation (0.79) is numerically identical to the result obtained
from the panel two-way fixed effects (TWFE) regression:

(0.80)

since the group identifier is constant for an individual . In the latter specification, the
group fixed effects have been replaced by individual cross-section effects.

0

40

80

120

160

200

I II III IV I II III IV I II III IV I II III IV

2019 2020 2021 2022

T NT

 D*

 ATET

 Y_T - Y_NT

 Y_T - Y_NT

Y b0 b1D b2T b3 D T e

D

b3
D

Yi g t, , ag gt dDg t, ei g t, ,

g g 1 g 0
Dg t,

d

d

Yi g t, , ai gt dDg t, ei g t, ,

g i

Background—401

Since the TWFE is estimated using ordinary least squares regression, all assumptions
required for an OLS model are also required for DiD estimation by TWFE.

Crucially, for estimates of to be unbiased for the ATET, DiD requires an additional parallel
trends assumption. The parallel trends assumption requires that in the counter-factual
where individuals in the treated group are not treated, the difference between the treatment
group and the control group is constant through time. Intuitively, when comparing a treat-
ment group to a never-treated or always-treated control group, unbiased estimation requires
that the change in outcomes for the control group before and after the treatment date is a
good measure of the (unobserved) untreated change in the treatment group.

Multiple Treatment Dates

The model given by Equation (0.77) assumes a single treatment date, , with all individu-
als who will be treated, receiving treatment on the same date.

A natural extension to the single treatment model is to assume that different groups of indi-
viduals have different treatment dates:

Here we have 3 groups of individuals, some are never treated NT, some are treated at the
earlier date (TE), and some are treated at a later date (TL).

In such cases we are still interested in the average treatment effect for the treated (ATET),
where the treatment effect is calculated as the effect on the trend post-treatment, whenever
that treatment occurs.

The natural estimator for the ATET is this case is to simply extend the TWFE model
Equation (0.80) to incorporate more than 2 groups:

(0.81)

d

D

0

50

100

150

200

250

300

I II III IV I II III IV I II III IV I II III IV

2019 2020 2021 2022

TE TL NT

 D1 D2

D1 D2

Yi g t, , ai gt dDg t, ei g t, ,

402—Difference-in-Difference Estimation

where now indexes the multiple treatment date groups. Note that the presence of multiple
treatment dates does not affect the form of the TWFE estimator.

Estimating DiD in EViews

The panel data TWFE model may be estimated using EViews’ built-in estimator for least
squares regression with fixed effects. However, EViews also offers a simple interface for esti-
mating the panel TWFE model, featuring tools for performing post-estimation diagnostics
such as parallel trends tests, the Goodman-Bacon decomposition and the Callaway-
Sant’Anna estimation diagnostic.

(To estimate DiD models on non-panel workfiles, you will need to specify the appropriate
least squares model manually using standard least squares regression.)

To estimate a DiD model in EViews, bring up the equation dialog by clicking on Object/New
Object…/Equation or Quick/Estimate Equation… from the main menu bar in your panel
workfile. EViews will detect the presence of your panel structure and in place of the stan-
dard equation dialog will open the panel equation estimation dialog. Select DiD – Differ-
ence-in-Difference in the Method dropdown display the DiD dialog:

In the Equation specification edit field you should enter the dependent variable followed by
any exogenous regressors apart from the treatment variable.

The treatment variable should be entered in the Treatment Variable edit field. The treat-
ment series should be a binary variable indicating whether the individual has been treated
(i.e., is 1 if the observation in a treatment group which is post-treatment date for that group,
and 0 otherwise).

g

Estimating DiD in EViews—403

The Options tab contains a single Coefficient name edit field that allows you to change the
default coefficient vector.

Click on OK to perform the difference-in-difference estimation and display the output:

The basic equation output for a DiD estimation is identical to that of least squares estima-
tion, but with the display of only the single treatment coefficient. Also, the test statistic and
associated p-value of a test of the parallel trends assumption is displayed with the summary
statistics at the bottom of the estimation. This test is a simple Wald-test run on the auxiliary
regression:

(0.82)

where is a trend term, and the test evaluates .

It should also be noted that when performing difference-in-difference estimation, EViews
uses cross-section cluster-robust standard errors.

Post-Estimation Views and Procs

Since the TWFE model of DiD is a simple regression model, the standard views and procs
available for least squares models are also available for DiD estimation.

There are a set of DiD specific views available under the Difference-in-Difference Diagnos-
tics view menu entry.

Dependent Variable: L_HOMICIDE
Method: Difference-in-Difference
Date: 05/13/22 Time: 10:56
Periods included: 11
Cross-sections included: 50
Total panel (balanced) observations: 550

Variable Coefficient Std. Error t-Statistic Prob.

POST 0.081812 0.064117 1.275980 0.2026

R-squared 0.910576 Mean dependent var 1.405760
Adjusted R-squared 0.899604 S.D. dependent var 0.590154
S.E. of regression 0.186992 Akaike info criterion -0.411237
Sum squared resid 17.09842 Schwarz criterion 0.066772
Log likelihood 174.0902 Hannan-Quinn criter. -0.224439
F-statistic 82.98904 Durbin-Watson stat 1.469473
Prob(F-statistic) 0.000000 Parallel trend stat 0.820393
Prob(P. trend) 0.411992

Yi g t, , ai gt dDi g t, , vTr Di g t, , ei g t, ,

Tr H0: v 0

404—Difference-in-Difference Estimation

Trends Summary

The Trends Summary Table and Trends Summary Graph views display the average of the
outcome variable by year, categorized by treatment group (i.e., the date at which treatment
occurs).

This trends summary graph offers a quick visual representation of the means by treatment
group to check whether the different groups have similar trends.

Goodman-Bacon Decomposition

Recent research has noted that the TWFE model is not suitable in multiple-timing DiD mod-
els if the impact of treatment changes as time from treatment increases. In this case, the

Trends Summary
Means of L_HOMICIDE
Date: 05/13/22 Time: 10:58
Sample: 2000 2010
Included observations: 550

 Mean 2005 2006 2007 2008 2009 Never All
 2000 1.756288 1.786845 1.307029 1.143948 0.823902 1.238060 1.384578
 2001 1.697463 1.789791 1.483962 1.114078 1.352019 1.238571 1.407987
 2002 1.719649 1.755136 1.353935 1.365008 0.592638 1.243661 1.386819
 2003 1.715632 1.806743 1.467548 1.485847 1.212344 1.253548 1.432208
 2004 1.717022 1.802504 1.443218 1.428943 1.201863 1.254353 1.427168

 2005 1.625275 1.775398 1.622460 1.598881 0.681382 1.282884 1.445561
 2006 1.831149 1.869994 1.447267 1.526418 1.280735 1.269485 1.461576
 2007 1.897956 1.911203 1.581592 1.411828 0.887561 1.258404 1.465498
 2008 1.860869 1.804862 1.363984 1.438825 1.238401 1.248592 1.422104
 2009 1.719375 1.736801 1.564256 1.527684 1.207879 1.115439 1.343316
 2010 1.664930 1.671675 1.427658 1.314476 0.971882 1.090319 1.286549
 All 1.745964 1.791905 1.460264 1.395994 1.040964 1.226665 1.405760

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2000 2001 2002 2003 2004 2005 2006

20052006
2007

2008
2009Never

Means of L_HOMICIDE by treatment date

Estimating DiD in EViews—405

TWFE estimator will exhibit bias since using observations from an already-treated group as
the comparison violates the parallel trends assumption.

The Goodman-Bacon Decomposition view calculates the treatment effects for individual
pairs of treatment groups. By focusing on results for different categories of comparisons, the
Goodman-Bacon decomposition looks for the presence of parallel trends bias in the compu-
tation of the multiple-timing TWFE.

Goodman-Bacon (2021) shows that the TWFE estimator is a weighted average of DiD estima-
tors for every combination of two groups of observations defined by two treatment dates
(comparisons). The weights used in the average are based upon the number of obser-
vations and the variance of the estimated treatment effect in these individual DiD compari-
sons.

Specifically, for every treatment group with a given treatment date (group), we compute
all comparisons with:

• observations treated at later dates (groups)

• observations treated at earlier dates (groups)

• never treated observations (group)

• always treated observations (group)

For the first set of cases where is an early treatment group () compared with a later
group (), we employ only untreated observations from periods up to the beginning of
the treatment date, so that the can serve as a non-changing control.

For the second set of cases where is a later treatment group () compared with an earlier
group (), we employ only treated observations from periods following the treatment
date, so that the can serve as a non-changing control.

It is important to note that both the against , and the against comparisons
employ control groups that consist of previously treated observations. These comparisons
are particularly susceptible to parallel trends bias when the treatment effect varies from the
date of treatment.

To display the decomposition, click on View/Difference-in-Difference Diagnostics/Good-
man-Bacon decomposition. EViews will display a spool view of output divided into three
sections.

The first section shows weighted means of the treatment effect categorized by the type of
 group comparison:

2 2

T
2 2

L

E

N

A

T E
L L

L

T L
E E

E

L E T A

2 2

406—Difference-in-Difference Estimation

The Cases column shows the number of year pairs used in the comparison. In this example,
there are 66 treatment date pairs in which and untreated observations are compared,
and 12 years in which both the and observations are compared with the observa-
tions.

The Mean Coef column the estimate of the ATET, while the Weight column contains the
weights used in forming the overall ATET estimate. Here the estimated ATET across vs.
untreated comparisons is -0.1868 with a weight of 0.1107. The estimated ATET for the
and observations vs. observations is -7.0437, with a weight of 0.3844.

Each of the ATET components in this table is itself a weighted average of individual treat-
ment-year pair comparisons. The second section of the spool displays the individual
coefficient estimates and weights for every comparison. For example, the first few lines of a
Goodman-Bacon decomposition are given by:

Goodman-Bacon Decomposition
Dependent Variable: ASMRS
Treatment Variable: POST
Date: 05/11/22 Time: 12:27
Sample: 1964 1996
Included observations: 1617

Component Cases Mean Coef. Weight

Earlier Vs Later 66 -0.186770 0.110654
Later Vs Earlier 66 3.511967 0.264644
Treated Vs Never 12 -5.330907 0.240270
Treated Vs Always 12 -7.043689 0.384432

E L
E L N

E
L E

L N

2 2

Component Coef. Weight

1969 Vs 1970 3.089865 0.000126
1970 Vs 1969 -23.83421 0.000680
1969 Vs 1971 0.728642 0.000882
1971 Vs 1969 -8.258332 0.004586
1969 Vs 1972 1.676302 0.000567
1972 Vs 1969 -7.148349 0.002835
1969 Vs 1973 0.672705 0.002520
1973 Vs 1969 -7.433827 0.012095
1969 Vs 1974 0.148880 0.000945
1974 Vs 1969 -5.158778 0.004347
1969 Vs 1975 9.615416 0.000756
1975 Vs 1969 0.668246 0.003326
1969 Vs 1976 3.482368 0.000441
1976 Vs 1969 4.239865 0.001852
1969 Vs 1977 -3.567539 0.001512
1977 Vs 1969 -13.05293 0.006048

Estimating DiD in EViews—407

The labeling of the individual components indicates the nature of the group comparison. For
example, the “1969 vs. 1970” comparison is an against comparison, while the “1970
vs. 1969” is the against comparison.

The final section in the spool contains a graph of the individual component results,
with different symbols and colors indicating the type of comparison. The graphical represen-
tation of the individual effects shown in the third section allows a quick visualization of the
effects:

Group-Time Effects (Callaway-Sant’Anna)

The Group-Time Average Treatment Effects (Callaway-Sant’Anna) view computes the Calla-
way and Sant’Anna (2021) estimator of the average treatment effects.

A study by Callaway and Sant’Anna (2020, CS) derives a new estimator for the DiD model
with multiple treatment time periods, breaking away from the TWFE estimator by using
weighted averages of the differences model Equation (0.77) with appropriate comparison
pairings.

Their estimator is robust to the treatment effect changing as time from treatment increases
so that the CS estimator can be useful as a diagnostic comparison to the TWFE estimator to
judge the reliability of the TWFE estimates.

To display the view select View/Difference-in-Difference Diagnostics/CS Group-Time
Effects... from the equation menu. EViews displays a dialog:

E L
L E

2 2

-30

-20

-10

0

10

20

30

40

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11

Earlier Vs Later
Later Vs Earlier
Treated Vs Always
Treated Vs Never

Weight

2x2 Coefficient

408—Difference-in-Difference Estimation

• The Additional regressors edit field allows you to estimate the Callaway and
Sant’Anna model on the underlying estimated TWFE model, but with additional
regressors. This allows you to estimate models via Callaway and Sant’Anna that may
be impossible to estimate via TWFE due to perfect collinearity. Simply enter the name
of series, or series expressions, you wish to add to the estimation in the edit field.

By default the CS estimator compares treated individuals grouped by treatment date against
a control group of individuals who never receive treatment. However these comparisons
could be modified to include individuals who have not yet been treated as the control group.

Each pairing compares groups the treated into year-of-treatment groups, and then compares
the difference between the output variable in each year after treatment with the year prior to
treatment. This difference is compared for the treatment group and the comparison group.

• The Comparison group radio buttons specify whether the comparison/control groups
in the Callaway-Sant’Anna model will be only those individuals who never receive
treatment (Never treated), or those who have yet to receive treatment in the current
time period (Not yet treated), or either (Both).

Clicking OK will estimate the Callaway and Sant’Anna model. The output is in the form of a
spool with five sections.

The first section provides a summary view of the CS results, including the overall average
treatment effect of the treated (calculated as the weighted average of the individual pairing
calculations), along with its standard-error, z-statistic and associated p-value.

Estimating DiD in EViews—409

The second section provides each of the individual pairings used in the weighted average
ATET estimation, including the estimated coefficient for the pairing, and its weight.

The remaining sections computes aggregations of the individual pairings, where the aggre-
gations are over treatment date (group), observation date (date), and time-since treatment
(duration). For each aggregation, the coefficients, standard errors, z-Statistics and associated
p-values are tabulated, along with a graph of the coefficients and a 95% confidence interval.

For example, the group effects consist of the weighted averages of the ATET coefficients

and the corresponding plot

Group-Time Average Treatment Effects
Dependent Variable: LEMP
Treatment Variable: TREATED
Date: 05/13/22 Time: 12:21
Sample: 2003 2007
Included observations: 2500

Overall Coefficient Std. Error z-Statistic Prob.

 TREATED -0.041969 0.011445 -3.667037 0.0002

Individual Effects

Date Treatment Comparison Coef. Cases Weight

2004 2004 2003 -0.014911 20 0.040000
2005 2004 2003 -0.076996 20 0.040000
2006 2004 2003 -0.141080 20 0.040000
2007 2004 2003 -0.107544 20 0.040000
2004 2006 2003 -0.002066 40 0.000000
2005 2006 2004 -0.006968 40 0.000000
2006 2006 2005 0.000766 40 0.080000
2007 2006 2005 -0.041536 40 0.080000
2004 2007 2003 0.026366 131 0.000000
2005 2007 2004 -0.004760 131 0.000000
2006 2007 2005 -0.028502 131 0.000000
2007 2007 2006 -0.028789 131 0.262000

Group Effects

Group Coefficient Std. Error z-Statistic Prob.

2004 -0.085133 0.024251 -3.510462 0.0004
2006 -0.020385 0.017403 -1.171386 0.2414
2007 -0.028789 0.016168 -1.780661 0.0750

410—Difference-in-Difference Estimation

shows the values along with 95% confidence intervals

Borusyak, Jaravel, and Spiess Imputed Estimator

A third study by Borusyak, Jaravel and Spiess (2021, BJS) describes a number of potential
issues with the TWFE estimator and derives an estimator that alleviates these issues. They
term their estimator an “imputation” estimator, since it uses estimates from untreated obser-
vations to forecast the outcome variable for observations for which individuals have been
treated, and then for each treated observation they impute the impact of treatment as the
difference between the forecast of the outcome, and the observed outcome. This series of
differences can then be averaged over to compute the average treatment effect.

To display the view select View/Difference-in-Difference Diagnostics/BJS Imputed Esti-
mator from the equation menu.

EViews estimates the BJS estimator and displays the output in a spool. As with the Group-
Time Effects view (“Group-Time Effects (Callaway-Sant’Anna)” on page 407), there are five
sections in the output: the summary view with the overall ATET, its standard-error, z-statis-
tic and associated p-value, the individual pairings used in the weighted average ATET esti-
mation, and sections for aggregations over treatment date (group), observation date (date),
and time-since treatment (duration).

Make Underlying Equation Proc

One additional DiD-specific tool is the Make Underlying Equation proc. Clicking on Proc/
Make Underlying Equation will produce a new equation object in which the difference-in-
difference model as a standard least squares equation. Having an equation with the DiD
specification estimated by least squares may prove useful for performing diagnostics or addi-
tional analysis.

-.15

-.10

-.05

.00

.05

2004 2006 2007

Examples—411

Examples

To demonstrate the use of DiD estimation in EViews we will replicate results from familiar
papers.

Card and Krueger (1994)

We first replicate results from one of the most famous DiD studies, the Card and Krueger
(1994) paper analyzing the impact of minimum wage laws on employment in fast food
workers.

Although Card and Krueger’s study is involves difference-in-difference estimation, they only
have two time periods: February/March 1992 and November/December 1992. They term
these two periods Wave 1 and Wave 2. During the gap between these two periods, New Jer-
sey increased the state minimum wage from $4.25 to $5.05. Pennsylvania, a neighboring
state, maintained its minimum wage at $4.25 during the same time period.

A subset of the data used in this paper are available in the workfile “CardKrueger.wf1”. The
data in the workfile contain data for 410 fast-food restaurants, 331 in New Jersey and 79 in
Pennsylvania. There are three series containing employment data: EMPFT has the number
of full time employees in each store, EMPTOT has the total number of employees, and EMP-
TOTC has the total number of employees, with stores that have closed down coded as a 0
(instead of an NA). The series HRSOPEN contains the number of hours, per day, each store
is open. The NEWMIN series is a binary variable indicating whether a store is subject to an
increased in the minimum wage (i.e. is based in New Jersey during wave 2).

We can replicate one of the results in the Card and Krueger paper by performing a simple
difference-in-difference estimation of EMPTOT against NEWMIN. We click on Quick/Esti-
mate Equation and then select DiD – Difference-in-Difference from the Method dropdown
to display the dialog:

412—Difference-in-Difference Estimation

Enter “EMPTOT C” in the Equation specification edit field, the name of the treatment indi-
cator “NEWMIN” in the Treatment variable edit field, and “1 2” in the Sample edit field.
Click on OK to estimate this specification. EViews will display the estimation results:

The estimate of the impact of the increase in the minimum wage on employment is 2.75.
This matches the result in Row 4., column (iii) of Table 3 in Card and Krueger, and forms
part of the basis for their overall finding that raising the minimum wage in New Jersey actu-
ally led to an increase in employment.

Dependent Variable: EMPTOT
Method: Difference in Difference
Date: 05/10/22 Time: 11:10
Periods included: 2
Cross-sections included: 410
Total panel (unbalanced) observations: 794

Variable Coefficient Std. Error t-Statistic Prob.

NEWMIN 2.750000 2.718648 1.011532 0.3124

R-squared 0.781841 Mean dependent var 21.02651
Adjusted R-squared 0.547121 S.D. dependent var 9.422746
S.E. of regression 6.341161 Akaike info criterion 6.838121
Sum squared resid 15360.34 Schwarz criterion 9.265021
Log likelihood -2302.734 Hannan-Quinn criter. 7.770758
F-statistic 3.330944 Durbin-Watson stat 4.124675
Prob(F-statistic) 0.000000

Examples—413

As noted earlier, the standard error of the estimate and the t-statistic p-value employ cross-
section cluster-robust standard error calculations.

Note the test statistic and p-value for the parallel trends test are not displayed at the bottom
of the table, since with only two time periods, an estimate of trend values cannot be com-
puted.

If we use EMPTOTC as the outcome variable instead of EMPTOT, we can replicate the result
in Row 5, column (iii) of Table 3 in Card and Krueger, which reports that the impact of the
raise in minimum wage is 2.51.

We could extend the specification to include the number of hours a store is open as a covari-
ate, simply by entering “HRSOPEN” as a regressor in the Equation specification edit field:

Dependent Variable: EMPTOTC
Method: Difference in Difference
Date: 05/10/22 Time: 10:37
Periods included: 2
Cross-sections included: 410
Total panel (unbalanced) observations: 798

Variable Coefficient Std. Error t-Statistic Prob.

NEWMIN 2.509212 2.718822 0.922904 0.3566

R-squared 0.776508 Mean dependent var 20.92112
Adjusted R-squared 0.538540 S.D. dependent var 9.515792
S.E. of regression 6.464156 Akaike info criterion 6.876732
Sum squared resid 16129.13 Schwarz criterion 9.294061
Log likelihood -2331.816 Hannan-Quinn criter. 7.805471
F-statistic 3.263085 Durbin-Watson stat 4.102828
Prob(F-statistic) 0.000000

414—Difference-in-Difference Estimation

Although not a specification estimated by Card and Krueger, estimation results for the
extended model allow evaluation of whether the basic result is sensitive to inclusion of this
covariate.

Click on OK to estimate the expanded specification. The results are given by:

We can see that the inclusion of the HRSOPEN covariate (which is indicated at the bottom of
the output) did not have a large impact on the estimate of the effect of the minimum wage

Dependent Variable: EMPTOT
Method: Difference in Difference
Date: 05/11/22 Time: 08:53
Periods included: 2
Cross-sections included: 410
Total panel (unbalanced) observations: 787

Variable Coefficient Std. Error t-Statistic Prob.

NEWMIN 2.839666 0.729372 3.893304 0.0001

R-squared 0.783983 Mean dependent var 21.17668
Adjusted R-squared 0.546018 S.D. dependent var 9.279035
S.E. of regression 6.252047 Akaike info criterion 6.809278
Sum squared resid 14618.95 Schwarz criterion 9.259060
Log likelihood -2266.451 Hannan-Quinn criter. 7.751101
F-statistic 3.294527 Durbin-Watson stat 4.164021
Prob(F-statistic) 0.000000

Additional covariates: HRSOPEN

Examples—415

increase (2.84 compared with the original 2.75), though the statistical significance of the
result is enhanced considerably.

Stevenson and Wolfers (2006)

As a second example, we will first replicate the study by Stevenson and Wolfers (2006),
which analyzed the impact of the introduction of no-fault divorce reforms on female suicide
rates. The dependent variable consists of annual suicide rates for US states between 1964
and 1996. Throughout this period a number of states, at different times, introduced no-fault
divorce reform.

This paper and the corresponding data was also studied by Goodman-Bacon (2021) as an
application of the Goodman-Bacon decomposition.

A subset of the data used in Stevenson and Wolfers is available in Stata format from Austin
Nichols’ website. We can easily open this file in EViews, and EViews will automatically
detect the panel nature of the data and set up the workfile with that structure:

wfopen http://pped.org/bacon_example.dta

The file contains data on the female suicide mortality rate in the series ASMRS, a binary
series, POST, equal to 1 if an observation is in a no-fault divorce environment, and zero if
no-fault divorces are not allowed, as well as cross-section (state) and date (year) series.

To determine the impact of no-fault divorce reform on female suicide mortality rate we can
perform a simple difference-in-difference, with multiple timings, estimation. We click on
Quick/Estimate Equation and then change the Method dropdown to DiD – Difference-in-
Difference. Note this method is only available because we have a workfile structured as a
panel. We enter “ASMRS” as the dependent/outcome variable, followed by our treatment
dummy, “POST”, and the sample pair “1964 1996”:

http://pped.org/bacon_example.dta
http://pped.org/bacon_example.dta

416—Difference-in-Difference Estimation

Clicking OK produces the estimation output:

The estimate of the impact of no-fault divorce reform on suicide mortality in females is -
3.08, which matches the number presented in Section III of Goodman-Bacon (2021).

To view the Goodman-Bacon decomposition (“Goodman-Bacon Decomposition” on
page 404) we click on View/Difference-in-Difference Diagnostics/Goodman-Bacon
Decomposition:

Dependent Variable: ASMRS
Method: Difference in Difference
Date: 05/10/22 Time: 11:31
Periods included: 33
Cross-sections included: 49
Total panel (balanced) observations: 1617

Variable Coefficient Std. Error t-Statistic Prob.

POST -3.079926 2.506623 -1.228715 0.2194

R-squared 0.700706 Mean dependent var 52.16641
Adjusted R-squared 0.684913 S.D. dependent var 19.62188
S.E. of regression 11.01428 Akaike info criterion 7.685642
Sum squared resid 186217.5 Schwarz criterion 7.958891
Log likelihood -6131.842 Hannan-Quinn criter. 7.787054
F-statistic 44.36712 Durbin-Watson stat 1.257677
Prob(F-statistic) 0.000000 Parallel trend stat -2.031163
Prob(P. trend) 0.042238

Examples—417

EViews opens a spool with output divided into three sections. The Individual components
middle section showing all of the individual coefficients and weights for each pair of
treatment dates is closed by default. These individual results can be displayed by clicking
the “+” symbol:

2 2

418—Difference-in-Difference Estimation

We can see that the coefficient comparing observations that introduced divorce
reform in 1969 with those that introduced reform in 1970 is 3.09.

The weighted average of these individual year pair-comparisons, combined into groups, is
displayed in the first section. We can see that each of the groupings has a negative coeffi-
cient, apart from the “Later vs. Earlier” group. Since this comparison group may violate the
parallel trends assumption, it is possible that a biased positive coefficient with large weight
may have upwardly biased the overall TWFE coefficient to the reported value of -3.08.

We can see that there is a large number of the “Later vs. Earlier” group above the overall
estimated coefficient, again indicating that this group may be upwardly biasing the overall
estimate.

Callaway and Sant’Anna (2021)

As a third example, we’ll examine the data used in Callaway and Sant’Anna (2021). Similar
to the Card and Krueger (1994_, Callaway and Sant’Anna study the impact of the minimum
wage on employment levels, but this time concentrating on teen employment. The data con-
tains county level teen employment between 2003–2007. During this time period the federal
minimum wage remained constant at $5.15 per hour. However some states increased the
minimum wage within the state above the federal level during the time period. Counties
within such states are the treated group (with different treatment times). Counties within
states that did not change their minimum wage are in the control group.

2 2

Examples—419

These data are provided in the workfile “CallawaySantanna.wf1”. The series TREATED is a
binary variable indicating whether a county has been subject to an increased minimum
wage in the time period, the series LEMP contains the log of employment for that county in
that time period, and the series LPOP contains the log of the population within the county. A
TWFE estimation of the impact of minimum wage on employment can be performed by
clicking on Quick/Estimate Equation and then changing the Method dropdown to
DiD - Difference-in-Difference. We enter “LEMP” as the dependent/outcome variable, fol-
lowed by our treatment dummy, “TREATED”, and sample pair “2003 2007”:

Click on OK to estimate the specification:

420—Difference-in-Difference Estimation

Note the TWFE estimate of the impact of treatment matches that given in Callaway and
Sant’Anna, Table 3, section A.

To view the Callaway-Sant’Anna estimator we click on View/Difference-in-Difference Diag-
nostics/CS Group-Time Effects… which brings up the Callaway-Sant’Anna dialog:

Note, we’ll include an additional regressor, LPOP, and set the comparison group to by those
states who never perform divorce reform. Since county population is constant through the
time period being analyzed (population data is taken from the 10 year census), it would not
be possible to include it as an explanatory variable in TWFE estimation. However, it may be
used in the CS estimator.

Dependent Variable: LEMP
Method: Difference in Difference
Date: 05/10/22 Time: 11:59
Periods included: 5
Cross-sections included: 500
Total panel (balanced) observations: 2500

Variable Coefficient Std. Error t-Statistic Prob.

TREATED -0.036549 0.016566 -2.206304 0.0275

R-squared 0.993218 Mean dependent var 5.772516
Adjusted R-squared 0.991505 S.D. dependent var 1.508781
S.E. of regression 0.139060 Akaike info criterion -0.929474
Sum squared resid 38.57851 Schwarz criterion 0.246984
Log likelihood 1666.842 Hannan-Quinn criter. -0.502364
F-statistic 579.7363 Durbin-Watson stat 1.686589
Prob(F-statistic) 0.000000 Parallel trend stat -0.249133
Prob(P. trend) 0.803258

Examples—421

The top portion of the output displays the overall estimate of the treatment effect, -0.042,
which compares with the TWFE estimate of -0.37.

Below this section we can see the individual coefficients for each date pairing, as well as
aggregations of them by treatment date (Group), observation date (Date) and time-since-
treatment (Duration).

422—Difference-in-Difference Estimation

References

Callaway, P. and H. C. Sant’Anna, 2021. “Difference-in-Differences with multiple time periods,” Journal of
Econometrics, 225(2), 200–230.

Card, D. and A. Krueger, 1994. “Minimum Wages and Employment: A Case Study of the Fast-Food Indus-
try in New Jersey and Pennsylvania,” American Economic Review, 84(4), 772–93.

Goodman-Bacon, A, 2021. “Difference-In-Differences With Variation In Treatment Timing,” Journal of
Econometrics, 225(2), 254–277.

Stevenson, B. and J. Wolfers, 2006. “Bargaining in the Shadow of the Law: Divorce Laws and Family Dis-
tress.” The Quarterly Journal of Economics, 121(1), 267–288.

Bayesian Time-varying Coefficients VAR Models

It is often difficult to justify the VAR assumption that model parameters are constant over

time. For example, a basic VAR fitted to post-war macroeconomic data assumes that

economic relationships have not changed since the mid-1940s. Two popular modeling

approaches that do away with this assumption are the switching VAR and the time-varying

coefficients VAR, or TVCVAR. The switching VAR deals with occasional discrete changes

(e.g., structural breaks), whereas the TVCVAR handles constant, smooth changes. The

discussion here pertains to the latter.

The EViews implementation of TVCVAR is Bayesian. The Bayesian TVCVAR, or BTVCVAR,
combines the TVCVAR model with a prior distribution. The BTVCVAR is popular even among
those who do not identify as Bayesian because the prior provides a convenient way to induce
shrinkage in a model that needs it.

The remainder of this discussion is organized as follows: We begin with an overview of the
BTVCVAR methodology. We then demonstrate how estimation and other post-updating pro-
cedures are carried out for the BTVCVAR in EViews. We provide implementation details next,
and close our discussion with an example.

Background

The TVCVAR consists of two equations, an observation equation and a process equation.
The observation equation is a VAR equation with period-specific coefficients, and the pro-
cess equation specifies a law of motion for the coefficients. The BTVCVAR combines the
TVCVAR with a prior distribution over the initial state of the coefficients process and the
model parameters.

Observation Equation

Let denoted the -vector of endogenous variables observed on date for
. To motivate the two equations that form the TVCVAR, we start with the

basic VAR model. The VAR equation under the basic VAR is

where the covariate vector

(0.83)

consists of lags of and the vector of exogenous variables . The coefficient matrix
is constant over time. We can get rid of this assumption by adding a time subscript on .
Doing so yields the observation equation:

(0.84)

yt N t
t 1 2 T, , ,

yt xtB et

xt yt 1– yt 2– yt p– wt, , , ,

p yt wt B
B

yt xtBt et

424—Bayesian Time-varying Coefficients VAR Models

Vectorizing both sides of the observation equation gives

(0.85)

where and . The error vector is given by
where is the observation covariance matrix.

Process Equation

Making coefficients period-specific resolves the original problem, but introduces a new one:
Taken alone, the observation equation results in a model that is over-parameterized for any
sample size. We can mitigate this issue by specifying a law of motion for the coefficients.
Typically this law of motion takes the form of a random walk process:

This is the process equation. The process error is given by where is the
process covariance matrix. The initial state of this process, , is specified as part of the
prior.

Prior Distribution

The process equation is certainly helpful, but may not completely eliminate the problems
that are associated with over-parameterization. Indeed, over-parameterization is often an
issue even for the basic VAR. The usual solution is to “shrink” the model towards a simpler
or stylized version of itself. The concept of shrinkage brings us to our next topic, the BTVC-
VAR.

The BTVCVAR combines the TVCVAR with a prior distribution. Bayesians form priors based
on information they have on the subject under study prior to seeing the data. For many non-
Bayesians, the prior is simply a means for achieving shrinkage. To shrink the model towards
a simpler or stylized version of itself, center the prior at the simpler/stylized model. Tighten-
ing the prior will then pull estimates towards the model at the center of the prior.

One example of shrinkage was already mentioned; the TVCVAR can be made to shrink
towards the basic VAR by specifying a tight prior about zero for the process error variance
terms. Shrinking towards the basic VAR to some extent is desirable because it yields coeffi-
cient estimates that evolve more smoothly over time.

The prior over the initial coefficient vector and covariance matrices and is

where

(0.86)

yt Xtbt et

Xt IN xt bt vec Bt() et et S N 0 S,
S

bt bt 1– ut

ut Q N 0 Q, Q
b0

b0 S Q
p b0 S Q, , p b0 p S p Q

b0 N b0 B0,

S IW S s,

Q IW Q q,

Estimating BTVCVAR in EViews—425

See the prior specification subsection for details on how to set the prior hyper-parameters.

The exposition here assumes an unrestricted process covariance matrix. In practice, it is
more common to work with a diagonal . See the implementation details section for more
information.

Posterior Distribution

The prior distribution combines with the likelihood function to form the posterior distribu-
tion, which becomes the basis for inference, predictions, etc. For example, a Bayesian point
estimate is usually just the mean or median of the posterior distribution.

Let denote the set of all observed data, and let denote the set of all coefficients includ-
ing . The posterior distribution over the model unknowns , , and is given by

where the first, second, and third terms on the right-hand side of the proportionality symbol,
, correspond to the prior distribution, the observation equation, and the process equation,

respectively.

This distribution does not lend itself to vanilla Monte Carlo sampling. Fortunately, posterior
simulation is possible using the Gibbs sampler. See the implementation details section for
additional information.

Estimating BTVCVAR in EViews

To estimate BTVCVAR in EViews, click on Quick/Estimate VAR... or run var in the com-
mand window. This will open the VAR Specification dialog. Select Bayesian TVCVAR from
the VAR type dropdown menu. The dialog should now have the Basics, Prior, and Options
tabs.

Q

y b
b0 b S Q

p b S Q y, , p b0 S Q, , f yt bt S, f bt bt 1– Q,
t 1

T

426—Bayesian Time-varying Coefficients VAR Models

Endogenous variables, lags, exogenous variables, and the estimation sample are set in the
Basics tab. Lags are required to be contiguous.

EViews gives users the option of setting aside a subset of the estimation sample for the pur-
pose of specifying a prior distribution. The observations that go towards specifying the prior
comprise the prior sample. The remaining observations make up the data sample, which is
used to update the prior. See the prior specification subsection for details.

Estimating BTVCVAR in EViews—427

Prior hyper-parameters are set inside the Prior tab. To help with setting the prior, EViews
maps the BTVCVAR prior hyper-parameters to a set of six scalar quantities. Users set these
scalars to specify a prior sample, control the variability of the time-varying coefficients, etc.
See the “Prior Specification” on page 430 for details.

There are four categories in the Options tab: Sampler, Display, Smoother, and Stability.

The Sampler options determine how the posterior sample is generated.

• The burn-in size is the number of initial draws to discard. It is specified as a count.
The burn-in process gives the underlying Markov chain time to converge to the poste-
rior distribution.

• The posterior sample size is used to determine how many posterior draws are used
to carry out post-updating procedures (estimation, forecasting, impulses responses
analysis, etc.).

• The thinning size is used to thin the Markov chain. A thinning size of indicates
that every -th draw is stored. For example, no thinning occurs when is set to 1,
and every other draw is stored when is set to 2. By definition, thinning does not
apply to burn-in draws.

• The seed field is used to set the random seed for the posterior simulator. EViews will
generate a seed automatically if the user does not specify one. Click Clear to clear the
seed field.

• The number of subchains field determines how many subchains are used when the
posterior sample gets regenerated. Regeneration is typically much faster than initial
generation since subchains can be run in parallel.

r
r r

r

428—Bayesian Time-varying Coefficients VAR Models

Display options determine what to report as estimation results. Users can pick either poste-
rior median or posterior mean as their point estimate. The point estimate type selected here
will be applied to the coefficients, the observation covariance matrix, and the errors. Users
can also display equal-tailed credibility intervals (bands) at one or more credibility levels for
the coefficients. To do so, check the box next to Show credibility intervals. Bands use shad-
ing by default. To use lines instead, check the box next to Use lines.

A simulation smoother can be selected from the dropdown menu under Smoother. EViews
currently supports three simulation smoothers: the Cholesky factor algorithm (CFA), the
Kalman filter and smoother (KFS), and the method of McCausland, Miller, & Pelletier
(MMP). For more information, see McCausland, Miller, & Pelletier (2011) and the references
therein.

To enforce stable VAR coefficients at each date within the data sample, select Cogley & Sar-
gent from the dropdown menu under Stability. The maximum number of attempts thresh-
old ensures that the sampler does not get stuck in an infinite loop in an attempt to obtain
stable draws.

Once the BTVCVAR model has been specified, click on OK to run the posterior simulator.
Progress is displayed in the bottom left corner of the EViews window. Once posterior simu-
lation is complete, estimates and other statistics based on the posterior sample are com-
puted.

Estimation results are presented in a spool-like object. The nodes under Output Sections in
the left pane are used for navigation. For example, clicking on the Summary node will bring
the summary table into focus. The checkboxes that appear below Display Coefficients are
used to show/hide coefficient series that are associated to specific endogenous variables,
lags, and exogenous variables. For example, unchecking the box next to C hides the coeffi-
cient series associated to the constant term in all graphs.

Working with a BTCVAR

Procs

To get posterior draws from the BTVCVAR object (to generate trace plots, for example), click
on Proc/Put Posterior Draws in New Page. Click on Proc/Make IF, RNE, and ESS to get
inefficiency factors (IF), relative numerical efficiencies (RNE), and effective sample sizes
(ESS) for all model parameters. NAs are given if sample autocorrelation does not fall below
0.05 in the first 100 lags.

Other procs let users make coefficient estimates, coefficient CI bands, and residuals.

Working with a BTCVAR—429

Residuals

To view an estimate of the error matrix in the form of a graph, go to View/Residuals/
Graphs or click on the Residuals button in the VAR toolbar. Go to View/Residuals/Spread-
sheet to see the same information in a table. Click on View/Residuals/Covariance Matrix
for an estimate of the observation covariance matrix.

Impulse Response

To generate impulse responses, go to View/Impulse Response... or click on the Impulse
button in the VAR toolbar. This will open the BTVCVAR version of the Impulse Responses
dialog.

The Display tab has two sections: Display information and Display options. The former is
identical to that used by the standard VAR model. The latter is specific to the BTVCVAR.

Impulse responses are generated based on VAR coefficients at the dates entered in the
Impulse date field. Impulse dates must fall within the data sample period.

The remaining display options are identical to those used in estimation.

Forecasting

To generate forecasts, go to Proc/Forecast... or click on the Forecast button in the VAR tool-
bar.

430—Bayesian Time-varying Coefficients VAR Models

If Dynamic forecast is selected, a standard VAR is assumed over the forecast period. Fore-
casts are generated based on VAR coefficients taken from the period prior to the start of the
forecast period.

Forecast display options are identical to those used in estimation.

Implementation Details

Prior Specification

The prior hyper-parameters are , , , , , and . Users set prior hyper-parameters
through the six scalar quantities , , , , , and . is the prior sample size,

 is a scaling factor controlling the prior variance of , and are prior scaling fac-
tors for and , respectively, and and are prior degrees of freedom
parameters.

Users have the option to set aside the first observations of the estimation sample for the
purpose of specifying the prior distribution. The way in which the scalar quantities map to
the original prior hyper-parameters depends on whether a prior sample is present.

Let and denote OLS results based on the prior sample. If , where is
the number of coefficients per equation, then the mapping

b0 B0 S s Q q
T0 t0 t1 t2 u1 u2 T0

t0 b0 t1 t2
S Q u1 s u2 q

T0

bˆ 0 varˆ bˆ 0() T0 k k

Implementation Details—431

is used. When a prior sample is not present, i.e., when , then the mapping is given
by

(0.87)

Entering invalid values for (e.g.,) returns an error.

Posterior Simulation

Posterior simulation is carried out using the Gibbs sampler, which is a Markov chain Monte
Carlo (MCMC) method for sampling from multivariate densities. It generates a Markov chain
by iteratively sampling from the full conditionals of the target density. Draws obtained after
the burn-in period are used to compute estimates, generate predictions, and so on.

The chain is initialized at the mode of the prior. Posterior full conditionals are described
below.

Posterior Full Conditional for b

Let

(0.88)

where the 's are zero matrices. Let

b0 bˆ 0

B0 t0varˆ bˆ 0()

S t1I

Q t2varˆ bˆ 0()

T0 0

b0 0

B0 t0I

S t1I

Q t2I

T0 1 T0 k

y
y1

yT

X,

O X1 O O
 O X2 O

O O O
O O O XT

b,

b0

b1

bT

O

432—Bayesian Time-varying Coefficients VAR Models

(0.89)

denote the matrix of first differences. It is a square matrix of order . Then

(0.90)

where

(0.91)

Posterior Full Conditional for S

Let

denote the matrix of observation errors. Then

where

(0.92)

Posterior Full Conditional for Q

Let

denote the matrix of process errors. Then

(0.93)

where

D

1 0 0 0
1– 1 0 0
0 1– 1 0 0
 0 0
0 0 1– 1

T 1

b y S Q, , N b B,

B D I B0
1– O

O I Q 1–
D I X I S 1– X

1–

b B D I B0
1– b0

0
X I S 1– y

E e1 e2 eT, , ,

S y b Q, , IW S s,

S S EE

s s T

U u1 u2 uT, , ,

Q y b S, , IW Q q,

Example—433

(0.94)

Diagonal Q

EViews follows the common practice of requiring to be diagonal. Under this restriction,
the prior on cannot be inverse Wishart. Instead, we have

where the prior on the -th diagonal element is given by

The notation and are as they were defined in the unrestricted case. It can be shown
that the posterior full conditional for is

(0.95)

where and are as they were defined in the unrestricted case. Conditioning on other
diagonal elements is suppressed in the notation; notice that the diagonal elements of are
conditionally independent in any case.

Memory Use

Following posterior simulation, a BTVCVAR object will hold onto draws until either the
object is deleted or the workfile is closed. Estimation results are written to disk; therefore, a
BTVCVAR object in a saved workfile can display estimation results without having to regen-
erate the posterior sample. Regeneration of the posterior sample is required if display
options are changed or when conducting other post-sampling procedures.

Replications

For reproducibility, set the random seed, the random number generator type, and the num-
ber of subchains. Specifying these options ensures that their default values are not used.

When a posterior sample is regenerated, it has the same set of draws as the original sample.
If the posterior sample cannot be regenerated for any reason, EViews will give you the
option to generate a new set of draws.

Example

We demonstrate the EViews implementation of BTVCVAR using a data set from Chan and
Jeliazkov (2009). Open the EViews workfile cj09.wf1 containing the series GDP (output
growth), UNEMP (unemployment rate), INTEREST (interest rate), and INFLATION (inflation
rate). Set the workfile sample to 1948Q4 2009Q4 to match the sample used by the code
accompanying the paper. Next, run

Q Q UU

q q T

Q
Q

p Q p Qjj
j

j Qjj

Qjj IW Qjj q,

Q q
Qjj

Qjj y b S, , IW Qjj q,

Q q
Q

434—Bayesian Time-varying Coefficients VAR Models

var myvar.btvcvar(nu1=7, nu2=6, size=20000, burn=1000, usemean) 1 1
gdp unemp interest inflation

in the command window. EViews will indicate the progress of the sampler in the bottom left
corner of the window.

Once complete, double click on MYVAR to view the estimation output.

Estimation output for the BTVCVAR is presented as a spool object. A summary is provided at
the top, followed by graphs showing the evolution of coefficients over time for each equa-
tion.

To change display options, click on the Estimate button in the VAR toolbar and go to the
Options tab. As an example, to show shaded 30% credibility bands, check the box next to
Show credibility intervals and enter 0.3 for Credibility levels. Click OK. The estimation
output will update to look like this:

References—435

Note that changing display options will not prompt the posterior simulator to run if poste-
rior draws are already available.

References

Blake, A. P., & Mumtaz, H. (2012). Applied Bayesian Econometrics for Central Bankers. Technical Books:
Centre for Central Banking Studies, Bank of England.

Canova, F. (1993). “Modelling and forecasting exchange rates with a Bayesian time-varying coefficient
model,” Journal of Economic Dynamics and Control, 17(1-2), 233–261.

Cogley, T., and Sargent, T. J. (2002). “Evolving post-World War II US inflation dynamics,” NBER macroeco-
nomics Annual, 16, 331–388.

Cogley, T., and Sargent, T. J. (2005). “Drifts and volatilities: monetary policies and outcomes in the post
WWII US,” Review of Economic Dynamics, 8(2), 262–302.

Del Negro, M., and Schorfheide, F. (2011). “Bayesian Macroeconometrics,” in The Oxford Handbook of
Bayesian Econometrics, Geweke, J., Koop, G., and Van Dijk H., eds., Oxford: Oxford University Press.

436—Bayesian Time-varying Coefficients VAR Models

Frühwirth-Schnatter, S. (1994). “Data augmentation and dynamic linear models,” Journal of Time Series
Analysis, 15(2), 183–202.

Giordani, P., Pitt, M., and Kohn, R. (2011). “Bayesian inference for time series state space models,” in The
Oxford Handbook of Bayesian Econometrics, Geweke, J., Koop, G., and Van Dijk H., eds., Oxford:
Oxford University Press.

Karlsson, S. (2013). “Forecasting with Bayesian vector autoregression,” in Handbook of Economic Forecast-
ing, Volume 2, Part B, Elliott, G. and A. Timmermann, eds., 791–897, Elsevier.

Koop, G., and Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroeconom-
ics, Now Publishers Inc.

Koop, G., and Potter, S. M. (2011). “Time varying VARs with inequality restrictions,” Journal of Economic
Dynamics and Control, 35(7), 1126–1138.

Louzis, D. P. (2019). Steady-state modeling and macroeconomic forecasting quality. Journal of Applied
Econometrics, 34(2), 285–314.

Lubik, T. A., and Matthes, C. (2015). “Time-varying parameter vector autoregressions: Specification, esti-
mation, and an application. Estimation, and an Application,” Economic Quarterly, 101(4), 323–352.

Nakajima, J. (2011). “Time-varying parameter VAR model with stochastic volatility: An overview of meth-
odology and empirical applications,” Monetary and Economic Studies, 29, 107–142.

Primiceri, G. E. (2005). “Time varying structural vector autoregressions and monetary policy,” The Review
of Economic Studies, 72(3), 821–852.

Index

Symbols
 186, 210

A
Add-ins

delete 142
Andrews automatic bandwidth

robust standard errors 222
ARDL

Bounds test 118
Dynamic multipliers 150
panel
pooled mean group estimation
similarity test 273
Symmetry test multipliers 276

ardl 112
AREMOS 140
AREMOS-TSD 140
ARIMA models

automatic forecasting 115
automatic selection 115

ASCII file
export coef to file 158
export matrix to file 161
export sym to file 167
export vector to file 164, 170
open file as workfile 278
save table to file 235

Australian Bureau of Statistics 69
ABS 140

autoarma 115
Automatic bandwidth selection

robust standard errors 222
Automatic forecast

ARIMA 115
ETS smoothing 61, 117, 155

Autoregressive distributed lag models
See ARDL.

B
Backcast

MA terms 221
Background color 245, 250, 255

Bandwidth
GMM estimation 222

Bartlett kernel
robust standard errors 222

Bayesian time-varying coefficients VAR See BTVC-
VAR

BEA 140
Binary file 278
Bloomberg data 140
BLS 140
Bohman kernel

robust standard errors 222
Bounds test 118
boundstest 118
BTVCVAR 119

estimation 425
forecasting 429
impulse response 429
memory 433
posterior 425, 431
post-updating procedures 428
prior 424
procs 428
replication 433
residuals 429

BTVCVAR 119
Bureau of Economic Analysis 140
Bureau of Labor Statistics 140

C
CEIC 140
Cell

background color 250, 255
text color 264, 269

clearcollabels 121, 122
clearowrlabels 122
clearrowlabels 123
Cloud drive 281, 297
Coef 105

procs 105
coef

export to disk 158
Coefficient

See coef.

438—Index

coint 124, 133
Cointegration

Engle-Granger test 124
Johansen test 133
Phillips-Ouliaris test 124
restrictions 377
test 124
test from a VAR 133

Color
keywords for specifying 244, 249, 254, 258,

267, 272
@RGB specification 244, 249, 254, 258, 267,

272
Column

matrix labels 121, 238
rowvector labels 121, 238
svector label 239
svector labels 122
sym labels 239
vector label 240
vector labels 122

COM session
open 298

Convergence criterion 221, 222
Convert

scalar to string 94
string to scalar 99

CSV
export coef to file 158
export matrix to file 161
export sym to file 167
export vector to file 164, 170
save table to file 235

@cumprod 91
@cumsum 91
Cumulative statistics

functions 91
product 91
sum 91

D
Daily seasonal adjustment 146
Daniell kernel

robust standard errors 222
Data

import 278
import as matrix 192
import as rowvector 198

import as sym 204
import as vector 186, 210

Data members
geomap 106

Database
Australian Bureau of Statistics 69
Deutsche Bundesbank 69
EIA 140
Insee 69
open existing 139
SDMX 69

Datastream 140
datelabel 137
DBnomics 140
dbopen 139
deleteaddin 142
Deutsche Bundesbank 69, 140
did 143
DIfference-in-difference 143
Double exponential smoothing 274
DRI DDS 140
DRIPro link 140
Dropbox 281, 297
dsa 146
Dynamic forecasting 180
Dynamic multipliers 150
dynmult 150

E
ec 151
ECB 140
EIA 140
Enterprise Edition 141
Equation 105

methods 105
procs 61, 106
views 105

Error correction model
See VEC and VAR.

Error-trend-seasonal smoothing
 See ETS smoothing

Estimation
BTVCVAR 425
panel

Estimation methods
ARMA 220
for var 111
generalized least squares 220

H—439

least squares 220
nonlinear least squares 220

ets 154
ETS smoothing 154

forecast 61, 117, 155
Eurostat database 140
EViews database 140
EViews Enterprise Edition 141
Excel

export coef to file 158
export matrix to file 161
export sym to file 167
export vector to file 164, 170

Excel file 278
export data to file 293, 295
importing data into matrix 192
importing data into rowvector 198
importing data into sym 204
importing data into vector 186, 210

Exponential smoothing 154, 274
 See also ETS smoothing
Holt-Winters additive 275
Holt-Winters multiplicative 275
Holt-Winters no seasonal 275

Export 229
workfile data 229, 293

export 158, 161, 164, 167, 170
External application

string 102

F
FAME database 140
Federal Reserve Economic Data 140
Files

opening/saving on a cloud location 281, 297
Fill

opacity 243
svector 94

fill 173
Fisher-Johansen 130
fit 174
Fitted index 174
Fitted values 174
forcavg 182
Forecast

ARIMA 115
automatic with ARIMA models 115
automatic with ETS smoothing 61, 117, 155

averaging 182
combining 182
dynamic (multi-period) 180
ETS smoothing 61, 117, 155
static (one-period ahead) 174
VAR/VEC 184

forecast 180, 184
Foreign data

open as workfile 278
save workfile data as 293

FRED 140
@-functions

cumulative statistics functions 91
fxrow 179
fxrowcol 180

G
Gauss file 278, 293
Gauss-Newton 221
Geomap 106

fill (background) color for shapes 245
procs 106
shape labels 259, 263

Geomap (object)
data members 106

GiveWin data 140
GLS 220
Google Drive 281, 297
Graph 107

axis labeling 137
element opacity 242, 243
options for individual elements 240
procs 107

Group 107
fill (background) color for cells 250
procs 107
text color for cells 264
views 107

H
HAC

robust standard errors 221, 223
Hausman test

similarity in ARDL/PMG 273
Haver Analytics Database 140
@holiday 65
Holiday functions 65
@holidayset 65

440—Index

Holt-Winters 274
HTML

export coef to file 158
export matrix to file 161
export sym to file 167
export vector to file 164, 170
open page as workfile 278
save table to file 235

Huber/White standard errors 221, 223

I
IHS 140
IHS Global Insight data 140
IHSMarkit 140
IMF 140
import 192, 198
Import data 278

as matrix 192
as rowvector 198
as sym 204
as vector 186, 210

importmat 204
impulse 216
Impulse response 216
Index

fitted from binary models 174
fitted from censored models 174
fitted from truncated models 174

Insee 69
INSEE (National Institute of Statistics and Economic

Studies) 141
Iteration 221

optimization method 221

J
Johansen cointegration test 124

from a VAR 133

K
Kao panel cointegration test 130
Kernel

robust standard errors 222

L
LaTeX

export coef as 158
export matrix as 161

export sym as 167
export vector as 164, 170
save table as 235

Line
opacity 242

Load
workfile 278

Lotus file 278, 293
export data to file 293
open 278

ls 220

M
Magellan 140
@makevalidname 93
Markdown

export coef as 158
export matrix as 161
export sym as 167
export vector as 164, 170
save table as 235

Matrix 107
column labels 121, 238
export to disk 161
procs 107
resize 233
row headers 122
row labels 260

Matrix commands and functions
utility 92

Model averaging 182
Moody’s Economy.com 141

N
Name

make a valid object name 93
National Oceanic and Atmospheric Administration

141
Newey-West automatic bandwidth

robust standard errors 222
Newton-Raphson 221
NOAA 141
Nonlinear ARDL

Symmetry test 276
Nonlinear least squares

single equation estimation 220
Numbers

converting from strings 99

R—441

O
Object

make a valid name 93
ODBC 278
OECD 141
OLS (ordinary least squares)

single equation estimation 220
OneDrive 281, 297
Open

database 139
foreign data as import 204
foreign data as matrix 186, 192, 210
foreign data as rowvector 198
foreign data as sym 204
foreign source data 278
workfile 278

Optimization
methods 221

Optimization algorithms
Gauss-Newton 221
Newton-Raphson 221

P
Page

save or export 229
pageload 228
pagesave 229
Panel cointegrating regression

PMG models
Panel data

estimation See Panel estimation.
Panel estimation 105
Parzen kernel

robust standard errors 222
Parzen-Cauchy kernel

robust standard errors 222
Parzen-Geometric kernel

robust standard errors 222
Parzen-Riesz kernel

robust standard errors 222
PcGive data 140
PDF

export coef as 158
export matrix as 161
export sym as 167
export vector as 164, 170
save table as 235

Pedroni panel cointegration test 130

Pesaran, Shin and Smith 118
PMG

similarity test 273
Pooled Mean Group estimation
Product

cumulative 91
Program evaluation 143

Q
Quadratic spectral kernel

robust standard errors 222

R
@range 93
Range of integers 93
RATS data

4.x native format 141
open 278
portable format 141

Read 186, 192, 198, 204, 210, 278
data from foreign file as matrix 192
data from foreign file as rowvector 198
data from foreign file as sym 204
data from foreign file as vector 186, 210

resize 233, 234
@RGB specification of colors 244, 249, 254, 258,

267, 272
Row

matrix headers 122
matrix labels 260
rowvector headers 123
rowvector labels 261
svector labels 123, 261
sym labels 262
vector labels 123, 262

Rowector
export to disk 164

Rowvector 108
column labels 121, 238
procs 108
row headers 123
row labels 261

RTF
export coef to file 158
export matrix to file 161
export sym to file 167
export vector to file 164, 170
save table to file 235

442—Index

S
SAS file 278
Save 293

workfile 293
workfile as foreign file 293

save 235
SDMX Database

Australian Bureau of Statistics 69
Deutsche Bundesbank 69
Insee 69

SDMX_ML format 141
Seasonal adjustment

daily 146
Series 109

fill (background) color for cells 255
smoothing 274
text color for cells 269

setcollabels 238, 239, 240
setelem 240
setfillcolor 245, 250, 255
setjust 259
setrowlabels 260, 261, 262
setshapelabel 263
settextcolor 264, 269
@sfill 94
Shape

background color 245
Shape labels 259, 263
smooth 274
Smoothing

ETS model 154
exponential smooth series 274
likelihood based 154

Spreadsheet
file export 293
file import 278
file import as matrix 192
file import as rowvector 198
file import as sym 204
file import as vector 186, 210

SPSS file 278
Stata file 278
Static forecast 174
@str 94
String

convert from a number 94
convert to number 99

String list

replace string 102
Sum

cumulative 91
Svector 109

column labels 122, 239
fill values 173
initialize 173
resize 234
row label 123
row labels 261
sfill 94

Sym 109
column labels 239
export to disk 167
procs 109
row labels 262

Symmetric matrix
See Sym.

Symmetry test 276
symmtest 276
Symr

resize 234

T
Table 111

fix rows and columns in display 180
fix rows in display 179
procs 111
save to diskExcel
save table to file 235

Test
Johansen cointegration 124
Johansen cointegration from a VAR 133

Text color 264, 269
Text file

import as matrix 192
import as rowvector 198
import as sym 204
import as vector 186, 210
open as workfile 278
save workfile as 293

Trading Economics 141
TSP portable data format 141
Tukey-Hamming kernel

robust standard errors 222
Tukey-Hanning kernel

robust standard errors 222
Tukey-Parzen kernel

X—443

robust standard errors 222

U
U.S. Energy Administration 140
UN 141
US Census 141

V
@val 99
VAR

forecasting 184
impulse response 216
methods 111
procs 111
variance decomposition 276

Var 111
Variance decomposition 276
vdecomp 276
VEC

estimating 151
Vector 111

column labels 122, 240
export to disk 170
integer range 93
procs 111
resize 234
row label 123
row labels 262

Vector error correction model
See VEC and VAR.

W
wfopen 278
wfsave 293
WHO 141
Workfile

export 293
load workfile pages into 228
open existing 278
open foreign source into 278
save 293
save individual page 229

World Bank 141
World Health Organization 141
@wreplace 102

X
xopen 298

444—Index

	Table of Contents
	Chapter 1. EViews 13 Beta Documentation Overview
	Beta Documentation Notes
	What’s New in EViews 13?

	Chapter 2. General EViews Interface
	New Pane and Tab User Interface
	Program Debugging
	Programming Dependency Logging
	Jupyter Notebook Support

	Chapter 3. Graphs and Tables
	Graph Line and Shade Transparency
	Custom Graph Data Labels
	Customizable Geomap Labels
	High-Low-Median Colormap Preset
	Fixing Rows and Columns in Tables

	Chapter 4. Econometrics and Statistics
	ARDL Estimation
	Pool Mean Group (PMG) Estimation
	Difference-in-Difference Estimation
	Enhanced VEC Estimation
	Bayesian Time-varying Coefficient Vector Autoregression
	Cointegration Testing
	Diagnostics in ARDL
	Diagnostics in Panel ARDL/PMG
	Enhanced Impulse Response Display

	Chapter 5. Data Handling
	Data Handling
	Data Sources and File Formats
	Matrix Language Support

	Preliminary Updates to Function Reference
	@holiday
	@holidayset
	@makevalidname
	@range
	@sfill
	@str
	@val
	@wreplace
	@xtype

	Preliminary Updates to Command Reference
	ardl
	autoarma
	boundstest
	btvcvar
	clearcollabels
	clearcollabels
	clearcollabels
	clearcollabels
	clearrowlabels
	clearrowlabels
	clearrowlabels
	clearrowlabels
	coint
	coint
	cointrel
	datelabel
	dbopen
	deleteaddin
	did
	didcs
	didgbdecomp
	didmakeeq
	didtrends
	dsa
	dynmult
	ec
	ecresults
	ets
	export
	export
	export
	export
	export
	fill
	fit
	fit
	fixcol
	fixrow
	fixrowcol
	forecast
	forcavg
	forecast
	import
	import
	import
	import
	import
	impulse
	ls
	pageload
	pagesave
	resize
	resize
	resize
	resize
	save
	setcollabels
	setcollabels
	setcollabels
	setcollabels
	setcollabels
	setelem
	setfillcolor
	setfillcolor
	setfillcolor
	setjust
	setrowlabels
	setrowlabels
	setrowlabels
	setrowlabels
	setrowlabels
	setshapelabel
	settextcolor
	settextcolor
	similarity
	smooth
	symmtest
	vdecomp
	wfopen
	wfsave
	xopen

	Daily Seasonal Adjustment
	Background
	Performing Daily Seasonal Adjustment in EViews
	Example
	References

	Linear and Nonlinear ARDL
	Background
	Estimating ARDL and NARDL in EViews
	Views and Procs of ARDL
	Examples
	References

	Vector Error Correction Models (VECMs)
	Cointegration
	The VECM Specification
	Estimating VEC Models in EViews
	Examples
	References

	Difference-in-Difference Estimation
	Background
	Estimating DiD in EViews
	Examples
	References

	Bayesian Time-varying Coefficients VAR Models
	Background
	Estimating BTVCVAR in EViews
	Working with a BTCVAR
	Implementation Details
	Example
	References

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

